-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
214 lines (168 loc) · 8.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pathlib
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import torch
import transformers
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl
from PIL import ImageFile
from transformers import (
Qwen2VLForConditionalGeneration,
Qwen2VLProcessor,
)
from aguvis.constants import IGNORE_INDEX
from aguvis.dataset import LazySupervisedDataset
from aguvis.trainer import AGUVISTrainer, rank0_print, safe_save_model_for_hf_trainer
apply_liger_kernel_to_qwen2_vl()
torch.multiprocessing.set_sharing_strategy("file_system")
ImageFile.LOAD_TRUNCATED_IMAGES = True
local_rank = None
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(default=None)
early_mix_text: bool = False
image_folder: Optional[str] = field(default=None)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=4096,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
group_by_modality_length: bool = field(default=False)
gradient_checkpointing: bool = field(default=True)
verbose_logging: bool = field(default=False)
attn_implementation: str = field(
default="flash_attention_2", metadata={"help": "Use transformers attention implementation."}
)
freeze_visual_encoder: bool = field(default=False)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
@dataclass
class DataCollatorForSupervisedDataset:
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def pad_sequence(self, input_ids, batch_first, padding_value):
if self.tokenizer.padding_side == "left":
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids]
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value)
if self.tokenizer.padding_side == "left":
input_ids = torch.flip(input_ids, [1])
return input_ids
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = [_input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids]
labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels]
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token_id = 0 # This gets the best result. Don't know why.
input_ids = self.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
batch = {
"input_ids": input_ids,
"labels": labels.long() if labels.dtype == torch.int32 else labels,
"attention_mask": input_ids.ne(self.tokenizer.pad_token_id),
}
if "pixel_values" in instances[0]:
batch["pixel_values"] = torch.concat([instance["pixel_values"] for instance in instances], dim=0)
batch["image_grid_thw"] = torch.concat([instance["image_grid_thw"] for instance in instances], dim=0)
return batch
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, processor: transformers.ProcessorMixin, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
tokenizer=tokenizer, processor=processor, data_path=data_args.data_path, data_args=data_args
)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return {"train_dataset": train_dataset, "eval_dataset": None, "data_collator": data_collator}
def train(attn_implementation="flash_attention_2"):
global local_rank
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if training_args.verbose_logging:
rank0_print("Inspecting experiment hyperparameters:\n")
rank0_print(f"model_args = {vars(model_args)}\n\n")
rank0_print(f"data_args = {vars(data_args)}\n\n")
rank0_print(f"training_args = {vars(training_args)}\n\n")
# rank0_print(f"evaluation_args = {vars(evaluation_args)}\n\n")
local_rank = training_args.local_rank
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
attn_implementation=attn_implementation,
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
low_cpu_mem_usage=False,
)
model.config.use_cache = False
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
)
additional_special_tokens = tokenizer.additional_special_tokens
if "<|recipient|>" not in additional_special_tokens:
additional_special_tokens = additional_special_tokens + ["<|recipient|>"]
if "<|diff_marker|>" not in additional_special_tokens:
additional_special_tokens = additional_special_tokens + ["<|diff_marker|>"]
smart_tokenizer_and_embedding_resize(
special_tokens_dict={"additional_special_tokens": additional_special_tokens},
tokenizer=tokenizer,
model=model,
)
print(f"Training args: {training_args}")
if training_args.freeze_visual_encoder:
for p in model.visual.parameters():
p.requires_grad = False
for p in model.visual.merger.parameters():
p.requires_grad = True
min_pixels = 256 * 28 * 28
# max_pixels = 31 * 18 * 28 * 28 # 480p
max_pixels = 46 * 26 * 28 * 28 # 720p
# max_pixels = 69 * 39 * 28 * 28 # 1080p
data_args.processor = Qwen2VLProcessor.from_pretrained(
model_args.model_name_or_path, min_pixels=min_pixels, max_pixels=max_pixels
)
data_args.processor.tokenizer = tokenizer
data_module = make_supervised_data_module(tokenizer=tokenizer, processor=data_args.processor, data_args=data_args)
trainer = AGUVISTrainer(
model=model,
processing_class=data_args.processor,
args=training_args,
**data_module,
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
rank0_print(f"Model saved to {training_args.output_dir}")
if __name__ == "__main__":
train()