forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhubconf.py
510 lines (409 loc) Β· 23.4 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# Ultralytics YOLOv5 π, AGPL-3.0 license
"""
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo
"""
import torch
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
"""
Creates or loads a YOLOv5 model, with options for pretrained weights and model customization.
Args:
name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt').
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels the model expects. Defaults to 3.
classes (int, optional): Number of classes the model is expected to detect. Defaults to 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True.
verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True.
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects
the best available device. Defaults to None.
Returns:
(DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified.
Examples:
```python
import torch
from ultralytics import _create
# Load an official YOLOv5s model with pretrained weights
model = _create('yolov5s')
# Load a custom model from a local checkpoint
model = _create('path/to/custom_model.pt', pretrained=False)
# Load a model with specific input channels and classes
model = _create('yolov5s', channels=1, classes=10)
```
Notes:
For more information on model loading and customization, visit the
[YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading).
"""
from pathlib import Path
from models.common import AutoShape, DetectMultiBackend
from models.experimental import attempt_load
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
from utils.downloads import attempt_download
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging
from utils.torch_utils import select_device
if not verbose:
LOGGER.setLevel(logging.WARNING)
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop"))
name = Path(name)
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path
try:
device = select_device(device)
if pretrained and channels == 3 and classes == 80:
try:
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
if autoshape:
if model.pt and isinstance(model.model, ClassificationModel):
LOGGER.warning(
"WARNING β οΈ YOLOv5 ClassificationModel is not yet AutoShape compatible. "
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)."
)
elif model.pt and isinstance(model.model, SegmentationModel):
LOGGER.warning(
"WARNING β οΈ YOLOv5 SegmentationModel is not yet AutoShape compatible. "
"You will not be able to run inference with this model."
)
else:
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
except Exception:
model = attempt_load(path, device=device, fuse=False) # arbitrary model
else:
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path
model = DetectionModel(cfg, channels, classes) # create model
if pretrained:
ckpt = torch.load(attempt_download(path), map_location=device) # load
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect
model.load_state_dict(csd, strict=False) # load
if len(ckpt["model"].names) == classes:
model.names = ckpt["model"].names # set class names attribute
if not verbose:
LOGGER.setLevel(logging.INFO) # reset to default
return model.to(device)
except Exception as e:
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading"
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help."
raise Exception(s) from e
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None):
"""
Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification.
Args:
path (str): Path to the custom model file (e.g., 'path/to/model.pt').
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input
types (default is True).
_verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently
(default is True).
device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc.
(default is None, which automatically selects the best available device).
Returns:
torch.nn.Module: A YOLOv5 model loaded with the specified parameters.
Notes:
For more details on loading models from PyTorch Hub:
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading
Examples:
```python
# Load model from a given path with autoshape enabled on the best available device
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
# Load model from a local path without autoshape on the CPU device
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu')
```
"""
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping,
verbosity, and device.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels for the model. Defaults to 3.
classes (int): Number of classes for object detection. Defaults to 80.
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/
cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True.
_verbose (bool): If True, prints detailed information to the screen. Defaults to True.
device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device
available (i.e., GPU if available, otherwise CPU). Defaults to None.
Returns:
DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with
pretrained weights and autoshaping applied.
Notes:
For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/
ultralytics_yolov5).
Examples:
```python
import torch
from ultralytics import yolov5n
# Load the YOLOv5-nano model with defaults
model = yolov5n()
# Load the YOLOv5-nano model with a specific device
model = yolov5n(device='cuda')
```
"""
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping,
verbosity, and device configuration.
Args:
pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True.
channels (int, optional): Number of input channels. Defaults to 3.
classes (int, optional): Number of model classes. Defaults to 80.
autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats.
Defaults to True.
_verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True.
device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or
torch.device instances. If None, automatically selects the best available device. Defaults to None.
Returns:
torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters.
Example:
```python
import torch
# Load the official YOLOv5-small model with pretrained weights
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# Load the YOLOv5-small model from a specific branch
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s')
# Load a custom YOLOv5-small model from a local checkpoint
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt')
# Load a local YOLOv5-small model specifying source as local repository
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local')
```
Notes:
For more details on model loading and customization, visit
the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5).
"""
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping,
verbosity, and device.
Args:
pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats.
Default is True.
_verbose (bool, optional): Whether to print detailed information to the screen. Default is True.
device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda').
Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-medium model.
Usage Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model
model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository
```
For more information, visit https://pytorch.org/hub/ultralytics_yolov5.
"""
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device
selection.
Args:
pretrained (bool): Load pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True.
_verbose (bool): Print all information to screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance.
Default is None.
Returns:
YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly
pretrained weights.
Examples:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l')
```
Notes:
For additional details, refer to the PyTorch Hub models documentation:
https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count,
autoshaping, verbosity, and device specification.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True.
channels (int): Number of input channels for the model. Defaults to 3.
classes (int): Number of model classes for object detection. Defaults to 80.
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to
True.
_verbose (bool): If True, prints detailed information during model loading. Defaults to True.
device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda').
Defaults to None.
Returns:
torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and
autoshaping applied.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5x')
```
For additional details, refer to the official YOLOv5 PyTorch Hub models documentation:
https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device.
Args:
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool, optional): If True, prints all information to screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None.
Default is None.
Returns:
torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations.
Example:
```python
import torch
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda')
```
Notes:
For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5
"""
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of object detection classes. Default is 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats.
Default is True.
_verbose (bool): If True, prints detailed information during model loading. Default is True.
device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device).
Default is None, which selects an available device automatically.
Returns:
torch.nn.Module: The YOLOv5-small-P6 model instance.
Usage:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6')
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model
```
Notes:
- For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5
Raises:
Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5
tutorials for help.
"""
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and
device.
Args:
pretrained (bool): If True, loads pretrained weights. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS.
Default is True.
_verbose (bool): If True, prints detailed information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the
best available device.
Returns:
torch.nn.Module: The YOLOv5-medium-P6 model.
Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details.
Example:
```python
import torch
# Load YOLOv5-medium-P6 model
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6')
```
Notes:
- The model can be loaded with pre-trained weights for better performance on specific tasks.
- The autoshape feature simplifies input handling by allowing various popular data formats.
"""
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool, optional): If True, load pretrained weights into the model. Default is True.
channels (int, optional): Number of input channels. Default is 3.
classes (int, optional): Number of model classes. Default is 80.
autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True.
_verbose (bool, optional): If True, print all information to the screen. Default is True.
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device.
If None, automatically selects the best available device. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-large-P6 model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model
model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository
```
Note:
Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5) for additional usage instructions.
"""
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device)
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None):
"""
Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping,
verbosity, and device selection.
Args:
pretrained (bool): If True, loads pretrained weights into the model. Default is True.
channels (int): Number of input channels. Default is 3.
classes (int): Number of model classes. Default is 80.
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True.
_verbose (bool): If True, prints all information to the screen. Default is True.
device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or
None for default device selection. Default is None.
Returns:
torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model.
Example:
```python
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model
```
Note:
For more information on YOLOv5 models, visit the official documentation:
https://docs.ultralytics.com/yolov5
"""
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device)
if __name__ == "__main__":
import argparse
from pathlib import Path
import numpy as np
from PIL import Image
from utils.general import cv2, print_args
# Argparser
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="yolov5s", help="model name")
opt = parser.parse_args()
print_args(vars(opt))
# Model
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
# model = custom(path='path/to/model.pt') # custom
# Images
imgs = [
"data/images/zidane.jpg", # filename
Path("data/images/zidane.jpg"), # Path
"https://ultralytics.com/images/zidane.jpg", # URI
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV
Image.open("data/images/bus.jpg"), # PIL
np.zeros((320, 640, 3)),
] # numpy
# Inference
results = model(imgs, size=320) # batched inference
# Results
results.print()
results.save()