forked from begeekmyfriend/tacotron2
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhparams_wavernn.py
94 lines (72 loc) · 3.9 KB
/
hparams_wavernn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# CONFIG -----------------------------------------------------------------------------------------------------------#
# Here are the input and output data paths (Note: you can override wav_path in preprocess.py)
wav_path = '/path/to/wav_files/'
data_path = 'data/'
# model ids are separate - that way you can use a new tts with an old wavernn and vice versa
# NB: expect undefined behaviour if models were trained on different DSP settings
voc_model_id = 'voc_mol'
tts_model_id = 'voc_lsa_smooth_attention'
# set this to True if you are only interested in WaveRNN
ignore_tts = True
# DSP --------------------------------------------------------------------------------------------------------------#
# Settings for all models
sample_rate = 22050
n_fft = 1024
fft_bins = n_fft // 2 + 1
num_mels = 80
mel_bias = 2
hop_length = 256 # 12.5ms - in line with Tacotron 2 paper
win_length = 1024 # 50ms - same reason as above
fmin = 50
min_level_db = -120
ref_level_db = 20
bits = 9 # bit depth of signal
mu_law = True # Recommended to suppress noise if using raw bits in hp.voc_mode below
peak_norm = False # Normalise to the peak of each wav file
# WAVERNN / VOCODER ------------------------------------------------------------------------------------------------#
# Model Hparams
voc_mode = 'RAW' # either 'RAW' (softmax on raw bits) or 'MOL' (sample from mixture of logistics)
voc_upsample_factors = (4, 8, 8) # NB - this needs to correctly factorise hop_length
voc_rnn_dims = 512
voc_fc_dims = 512
voc_compute_dims = 128
voc_res_out_dims = 128
voc_res_blocks = 10
# Training
voc_batch_size = 64
voc_lr = 1e-4
voc_checkpoint_every = 25_000
voc_gen_at_checkpoint = 5 # number of samples to generate at each checkpoint
voc_total_steps = 1_000_000 # Total number of training steps
voc_test_samples = 50 # How many unseen samples to put aside for testing
voc_pad = 2 # this will pad the input so that the resnet can 'see' wider than input length
voc_pad_val = -5 # this is the minimum of mel features
voc_seq_len = hop_length * 5 # must be a multiple of hop_length
# Generating / Synthesizing
voc_gen_batched = True # very fast (realtime+) single utterance batched generation
voc_target = 5_120 # target number of samples to be generated in each batch entry
voc_overlap = 256 # number of samples for crossfading between batches
# TACOTRON/TTS -----------------------------------------------------------------------------------------------------#
# Model Hparams
tts_r = 1 # model predicts r frames per output step
tts_embed_dims = 256 # embedding dimension for the graphemes/phoneme inputs
tts_encoder_dims = 128
tts_decoder_dims = 256
tts_postnet_dims = 128
tts_encoder_K = 16
tts_lstm_dims = 512
tts_postnet_K = 8
tts_num_highways = 4
tts_dropout = 0.5
tts_cleaner_names = ['english_cleaners']
# Training
tts_schedule = [(7, 1e-3, 10_000, 32), # progressive training schedule
(5, 1e-4, 100_000, 32), # (r, lr, step, batch_size)
(2, 1e-4, 180_000, 16),
(1, 1e-4, 350_000, 8)]
tts_max_mel_len = 1250 # if you have a couple of extremely long spectrograms you might want to use this
tts_bin_lengths = True # bins the spectrogram lengths before sampling in data loader - speeds up training
tts_clip_grad_norm = 1.0 # clips the gradient norm to prevent explosion - set to None if not needed
tts_checkpoint_every = 2_000 # checkpoints the model every X steps
# TODO: tts_phoneme_prob = 0.0 # [0 <-> 1] probability for feeding model phonemes vrs graphemes
# ------------------------------------------------------------------------------------------------------------------#