|
64 | 64 | "\n",
|
65 | 65 | "class MLPModel(nn.Module):\n",
|
66 | 66 | " def __init__(self):\n",
|
67 |
| - " super(MLPModel, self).__init__()\n", |
| 67 | + " super().__init__()\n", |
68 | 68 | " self.fc1 = nn.Linear(784, 256)\n",
|
69 | 69 | " self.relu1 = nn.ReLU()\n",
|
70 | 70 | " self.fc2 = nn.Linear(256, 10)\n",
|
|
121 | 121 | }
|
122 | 122 | ],
|
123 | 123 | "source": [
|
124 |
| - "mod, param_spec = MLPModel().export_tvm(\n", |
| 124 | + "model = MLPModel()\n", |
| 125 | + "mod, param_spec = model.export_tvm(\n", |
125 | 126 | " spec={\"forward\": {\"x\": nn.spec.Tensor((1, 784), \"float32\")}}\n",
|
126 | 127 | ")\n",
|
127 | 128 | "mod.show()"
|
|
147 | 148 | },
|
148 | 149 | {
|
149 | 150 | "cell_type": "code",
|
150 |
| - "execution_count": 4, |
| 151 | + "execution_count": 7, |
151 | 152 | "metadata": {},
|
152 | 153 | "outputs": [],
|
153 | 154 | "source": [
|
|
156 | 157 | },
|
157 | 158 | {
|
158 | 159 | "cell_type": "code",
|
159 |
| - "execution_count": 5, |
| 160 | + "execution_count": 8, |
160 | 161 | "metadata": {},
|
161 | 162 | "outputs": [
|
162 | 163 | {
|
|
273 | 274 | },
|
274 | 275 | {
|
275 | 276 | "cell_type": "code",
|
276 |
| - "execution_count": 6, |
| 277 | + "execution_count": 9, |
277 | 278 | "metadata": {},
|
278 | 279 | "outputs": [
|
279 | 280 | {
|
280 | 281 | "name": "stdout",
|
281 | 282 | "output_type": "stream",
|
282 | 283 | "text": [
|
283 |
| - "[[24572.564 24926.229 25577.898 24807.32 25382.205 25409.445 24776.041\n", |
284 |
| - " 26966.22 25864.61 24976.56 ]]\n" |
| 284 | + "[[25814.24 25661.46 23081.768 25914.645 25132.182 26040.564 24963.717\n", |
| 285 | + " 25476.984 24674.125 24782.957]]\n" |
285 | 286 | ]
|
286 | 287 | }
|
287 | 288 | ],
|
|
350 | 351 | "name": "python",
|
351 | 352 | "nbconvert_exporter": "python",
|
352 | 353 | "pygments_lexer": "ipython3",
|
353 |
| - "version": "3.12.4" |
| 354 | + "version": "3.12.2" |
354 | 355 | }
|
355 | 356 | },
|
356 | 357 | "nbformat": 4,
|
|
0 commit comments