forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py
87 lines (77 loc) · 2.44 KB
/
yolox_s_fast_8xb32-300e-rtmdet-hyp_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
_base_ = './yolox_s_fast_8xb8-300e_coco.py'
# ========================modified parameters======================
# Batch size of a single GPU during training
# 8 -> 32
train_batch_size_per_gpu = 32
# Multi-scale training intervals
# 10 -> 1
batch_augments_interval = 1
# Last epoch number to switch training pipeline
# 15 -> 20
num_last_epochs = 20
# Base learning rate for optim_wrapper. Corresponding to 8xb32=256 bs
base_lr = 0.004
# SGD -> AdamW
optim_wrapper = dict(
_delete_=True,
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
paramwise_cfg=dict(
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
# 0.0001 -> 0.0002
ema_momentum = 0.0002
# ============================== Unmodified in most cases ===================
model = dict(
data_preprocessor=dict(batch_augments=[
dict(
type='YOLOXBatchSyncRandomResize',
random_size_range=(480, 800),
size_divisor=32,
interval=batch_augments_interval)
]))
param_scheduler = [
dict(
# use quadratic formula to warm up 5 epochs
# and lr is updated by iteration
# TODO: fix default scope in get function
type='mmdet.QuadraticWarmupLR',
by_epoch=True,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
# use cosine lr from 5 to 285 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=5,
T_max=_base_.max_epochs - num_last_epochs,
end=_base_.max_epochs - num_last_epochs,
by_epoch=True,
convert_to_iter_based=True),
dict(
# use fixed lr during last num_last_epochs epochs
type='ConstantLR',
by_epoch=True,
factor=1,
begin=_base_.max_epochs - num_last_epochs,
end=_base_.max_epochs,
)
]
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
num_last_epochs=num_last_epochs,
new_train_pipeline=_base_.train_pipeline_stage2,
priority=48),
dict(type='mmdet.SyncNormHook', priority=48),
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=ema_momentum,
update_buffers=True,
strict_load=False,
priority=49)
]
train_dataloader = dict(batch_size=train_batch_size_per_gpu)
train_cfg = dict(dynamic_intervals=[(_base_.max_epochs - num_last_epochs, 1)])
auto_scale_lr = dict(base_batch_size=8 * train_batch_size_per_gpu)