-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathbuild_imglatex_data.py
268 lines (234 loc) · 11.2 KB
/
build_imglatex_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
'''
File: data_processing.py
Project: dataset
File Created: Wednesday, 11th July 2018 6:33:11 pm
Author: xiaofeng ([email protected])
-----
Last Modified: Wednesday, 11th July 2018 6:33:16 pm
Modified By: xiaofeng ([email protected]>)
-----
2018.06 - 2018 Latex Math, Latex Math
'''
import json
import logging
import os
import pickle
import shutil
from multiprocessing import Pool
from config_dataset import Config as cfg
from data_utils import *
THREAD = 4
AUG = True
"""
用于生成训练用文件,
1. 对原始图片进行crop,对截取的区域小于100的,文字为多行的去掉,截取文字部分的最小矩形边框
2. croop之后获取图片的尺寸列表
3. 使用聚类的方法将图片尺寸归纳为k类
4. 使用聚类之后的尺寸对图片进行resize
5. 创建训练数据集
问题:聚类之后的图片尺寸仍然很大,修改resize的方法:
将图片的尺寸进行高度方向的限制,设置三种尺寸(10,20,30,40),保持高度和宽度比例不变进行图片修正,
这样之后,图片的尺寸高度进行了固定可是长度方向变化很大
之后在进行图像尺寸的聚类,得到k类图像宽度的分布,对不满足的图像尺寸进行长度方向的padding,
最终确定图片的bucket
"""
def initiate_dir(dir_name):
"""Creates directory if it does not exists"""
if dir_name is not None:
if not os.path.exists(dir_name):
os.makedirs(dir_name)
return True
else:
return False
def generate_dataset(parameters, config):
""" generate the train dataset """
img_ori, train_list_dir, test_list_dir, validate_list_dir, croped_dir, size_first_resized, \
size_ori_dict, img_augumentation_dir, label_augumentation_dir, resized_size_bucket, \
resize_img_path, padding_img_path, croped_img_names, voacbulary_path, vocab_dict_path, \
properties_json, label_path, formula_file, temp_dir, prepared_dir = parameters
# assert os.path.exists(img_ori), '{} does not exist'.format(img_ori)
THREAD = config.thread_nums
if not os.path.exists(prepared_dir):
os.makedirs(prepared_dir)
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
""" crop the ori img """
assert os.path.exists(img_ori) and os.path.exists(formula_file)
ori_filelist = [i for i in os.listdir(img_ori) if i.endswith('.png')]
ori_label_list = open(formula_file).readlines()
assert len(ori_filelist) <= len(
ori_label_list), 'Original image nums and formula nums must be same... '
if not os.path.exists(label_path):
os.makedirs(label_path)
label_folder_list = [i for i in os.listdir(label_path) if i.endswith('.lst')]
if config.process_original and len(label_folder_list) <= int(0.95 * len(ori_label_list)):
total = [train_list_dir, test_list_dir, validate_list_dir]
out = []
for set_dir in total:
logging.info('Runing the {:s}'.format(set_dir))
set_list = open(set_dir).readlines()
for line in set_list:
formula_idx, image_name, _ = line.strip().split()
formula = ori_label_list[int(formula_idx)]
formula = formula.strip()
image = image_name+'.png'
out.append([image, formula])
with open(os.path.join(label_path, image_name + '.lst'), 'w') as fo:
fo.write('%s\n' % formula)
with open(os.path.join(temp_dir, 'im2latex_datset.pkl'), 'wb') as fi:
pickle.dump(out, fi, protocol=pickle.HIGHEST_PROTOCOL)
logging.info('Preprocess the original dataset and generate the label files ')
if config.croped_flage:
croped_actual_flage = initiate_dir(croped_dir)
if not croped_actual_flage:
croped_filelist = [i for i in os.listdir(croped_dir) if i.endswith('.png')]
if len(croped_filelist) > int(0.8*len(ori_filelist)):
logging.info(
'Croped folder is exist and the image numm equal with original image folder')
logging.info('Skip croping task ...')
else:
try:
shutil.rmtree(croped_dir)
except:
pass
os.makedirs(croped_dir)
logging.info(
'Image num is {:d} and will be saved to the folder {:s}'.format(
len(ori_filelist),
croped_dir))
logging.info('Creating pool with %d threads for the croping task ...' % THREAD)
pool = Pool(THREAD)
logging.info('Croping image task running...')
croped_names = list(
pool.map(
crop_image,
[(os.path.join(img_ori, filename), croped_dir, filename) for filename in ori_filelist]))
logging.info('Save out image name to {:s}'.format(croped_img_names))
logging.info('Croped success image num is [{:d}]'.format(len(croped_names)))
with open(croped_img_names, 'wb') as ou:
pickle.dump(croped_names, ou, pickle.HIGHEST_PROTOCOL)
pool.close()
pool.join()
logging.info('Croping image done and go to the next task...')
del croped_names
del ori_filelist
if config.resize_flage:
if not os.path.exists(size_ori_dict):
logging.info('Get the image dataset details ...')
logging.info('Details saved to the folder {}'.format(size_ori_dict))
get_img_size_dict(croped_dir, size_ori_dict)
with open(size_ori_dict, 'r') as dic:
size_dict = json.load(dic)
logging.info('Load size dictionary done ...')
height_croped = size_dict['height']
resized_actual_flage = initiate_dir(resize_img_path)
croped_names = [i for i in os.listdir(croped_dir) if i.endswith('.png')]
if not resized_actual_flage:
resized_names = [i for i in os.listdir(resize_img_path) if i.endswith('.png')]
if len(resized_names) >= int(0.9 * len(croped_names)):
logging.info('Resized folder is exist and the image numm equal with croped image nums')
logging.info('Skip resizing task ...')
del resized_names
else:
shutil.rmtree(resize_img_path)
os.makedirs(resize_img_path)
logging.info('Resizing pool with %d threads for the croping task ...' % THREAD)
logging.info('Resize image task runing ...')
pool = Pool(THREAD)
pool.map(
resize_img_target_height,
[(filename, croped_dir, height_croped, resize_img_path, config.height_list)
for filename in croped_names])
pool.close()
pool.join()
logging.info('Resize image done and go to the next task ...')
del croped_names
""" padding the resized img based resized_size_bucket """
if config.padding_flage:
""" get the size bucket of the resized img """
if not os.path.exists(resized_size_bucket):
logging.info('K_means to get the size buckets of the resized imgs...')
size_bucket_list = k_means_size_list(
resize_img_path, size_first_resized, resized_size_bucket, config.height_list)
logging.info('Generate size buckets done ...')
else:
with open(resized_size_bucket, 'rb') as size:
size_bucket_list = pickle.load(size)
logging.info('Size bucket is {}'.format(size_bucket_list))
padding_actual_flage = initiate_dir(padding_img_path)
resized_names = [i for i in os.listdir(resize_img_path) if i.endswith('.png')]
if not padding_actual_flage:
padding_names = [i for i in os.listdir(padding_img_path) if i.endswith('.png')]
if len(padding_names) >= int(0.9*len(resized_names)):
logging.info('Resized folder is exist and the image numm equal with croped image nums')
logging.info('Skip padding task ...')
del padding_names
else:
shutil.rmtree(padding_img_path)
os.makedirs(padding_img_path)
logging.info('Padding pool with %d threads for the padding task ...' % THREAD)
logging.info('Padding image task runing ...')
pool = Pool(THREAD)
pool.map(img_padding, [(filename, resize_img_path, size_bucket_list, padding_img_path)
for filename in resized_names])
pool.close()
pool.join()
logging.info('Padding image done and go to the next task ...')
del resized_names
""" img augumentation """
if config.augumentation_flag:
try:
os.makedirs(img_augumentation_dir)
os.makedirs(label_augumentation_dir)
except:
pass
# img_augumentation(
# padding_img_path, label_path, img_augumentation_dir,
# label_augumentation_dir)
image_aug(
padding_img_path, label_path, img_augumentation_dir,
label_augumentation_dir)
print('Step5: img augumentation done')
dataset_img = img_augumentation_dir
dataset_label = label_augumentation_dir
else:
logging.info('Skipping the augumentation process and generate the uniform dataset')
dataset_img = padding_img_path
dataset_label = label_path
if not os.path.exists(voacbulary_path):
parameters_generate_vacab = dataset_label, voacbulary_path, vocab_dict_path, temp_dir, logging
get_vocabluary(parameters_generate_vacab)
logging.info('Get vocabulary form the label files ...')
logging.info('Go to the next step ...')
print('Make the dataset with numpy format')
logging.info('Generate the dataset as the numpy dataset ... ')
generate_numpy_data(voacbulary_path, dataset_label,
dataset_img, prepared_dir, properties_json, temp_dir, logging)
print('Final: dataset has made')
if __name__ == '__main__':
print('local or remote represents 0 or 1')
print('Enhance style is: ori, diff_threshold, Latex')
local_or_not = int(input('Please select the location: local(0) or remote(1):'))
enhance_type = int(
input(
'Please select enhance style: ori(0) ,handwritten(1):'))
dataset_config = cfg(local_falge=local_or_not, enhance_flage=enhance_type)
logging.basicConfig(
level=logging.INFO,
format='%(asctime)-15s %(name)-5s %(levelname)-8s %(message)s',
filename='dataset_log.log')
logging.info('*'*50)
logging.info('Generating the dataset ....')
logging.info('local is {} and enhance is {}'.format(local_or_not, enhance_type))
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)-15s %(name)-5s %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
logging.info('Script being executed: %s' % __file__)
parameters = dataset_config.dir_settings
generate_dataset(parameters, dataset_config)
logging.info('All Done ...')
logging.info('#'*50)
print('done')