forked from CasvandenBogaard/VBMF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VBMF.py
289 lines (216 loc) · 9.87 KB
/
VBMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from __future__ import division
import numpy as np
from scipy.sparse.linalg import svds
from scipy.optimize import minimize_scalar
def VBMF(Y, cacb, sigma2=None, H=None):
"""Implementation of the analytical solution to Variational Bayes Matrix Factorization.
This function can be used to calculate the analytical solution to VBMF.
This is based on the paper and MatLab code by Nakajima et al.:
"Global analytic solution of fully-observed variational Bayesian matrix factorization."
Notes
-----
If sigma2 is unspecified, it is estimated by minimizing the free energy.
If H is unspecified, it is set to the smallest of the sides of the input Y.
To estimate cacb, use the function EVBMF().
Attributes
----------
Y : numpy-array
Input matrix that is to be factorized. Y has shape (L,M), where L<=M.
cacb : int
Product of the prior variances of the matrices that factorize the input.
sigma2 : int or None (default=None)
Variance of the noise on Y.
H : int or None (default = None)
Maximum rank of the factorized matrices.
Returns
-------
U : numpy-array
Left-singular vectors.
S : numpy-array
Diagonal matrix of singular values.
V : numpy-array
Right-singular vectors.
post : dictionary
Dictionary containing the computed posterior values.
References
----------
.. [1] Nakajima, Shinichi, et al. "Global analytic solution of fully-observed variational Bayesian matrix factorization." Journal of Machine Learning Research 14.Jan (2013): 1-37.
.. [2] Nakajima, Shinichi, et al. "Perfect dimensionality recovery by variational Bayesian PCA." Advances in Neural Information Processing Systems. 2012.
"""
L,M = Y.shape #has to be L<=M
if H is None:
H = L
#SVD of the input matrix, max rank of H
U,s,V = np.linalg.svd(Y)
U = U[:,:H]
s = s[:H]
V = V[:H].T
#Calculate residual
residual = 0.
if H<L:
residual = np.sum(np.sum(Y**2)-np.sum(s**2))
#Estimation of the variance when sigma2 is unspecified
if sigma2 is None:
upper_bound = (np.sum(s**2)+ residual)/(L+M)
if L==H:
lower_bound = s[-1]**2/M
else:
lower_bound = residual/((L-H)*M)
sigma2_opt = minimize_scalar(VBsigma2, args=(L,M,cacb,s,residual), bounds=[lower_bound, upper_bound], method='Bounded')
sigma2 = sigma2_opt.x
print "Estimated sigma2: ", sigma2
#Threshold gamma term
#Formula above (21) from [1]
thresh_term = (L+M + sigma2/cacb**2)/2
threshold = np.sqrt( sigma2 * (thresh_term + np.sqrt(thresh_term**2 - L*M) ))
#Number of singular values where gamma>threshold
pos = np.sum(s>threshold)
#Formula (10) from [2]
d = np.multiply(s[:pos],
1 - np.multiply(sigma2/(2*s[:pos]**2),
L+M+np.sqrt( (M-L)**2 + 4*s[:pos]**2/cacb**2 )))
#Computation of the posterior
post = {}
zeta = sigma2/(2*L*M) * (L+M+sigma2/cacb**2 - np.sqrt((L+M+sigma2/cacb**2)**2 - 4*L*M))
post['ma'] = np.zeros(H)
post['mb'] = np.zeros(H)
post['sa2'] = cacb * (1-L*zeta/sigma2) * np.ones(H)
post['sb2'] = cacb * (1-M*zeta/sigma2) * np.ones(H)
delta = cacb/sigma2 * (s[:pos]-d- L*sigma2/s[:pos])
post['ma'][:pos] = np.sqrt(np.multiply(d, delta))
post['mb'][:pos] = np.sqrt(np.divide(d, delta))
post['sa2'][:pos] = np.divide(sigma2*delta, s[:pos])
post['sb2'][:pos] = np.divide(sigma2, np.multiply(delta, s[:pos]))
post['sigma2'] = sigma2
post['F'] = 0.5*(L*M*np.log(2*np.pi*sigma2) + (residual+np.sum(s**2))/sigma2 - (L+M)*H
+ np.sum(M*np.log(cacb/post['sa2']) + L*np.log(cacb/post['sb2'])
+ (post['ma']**2 + M*post['sa2'])/cacb + (post['mb']**2 + L*post['sb2'])/cacb
+ (-2 * np.multiply(np.multiply(post['ma'], post['mb']), s)
+ np.multiply(post['ma']**2 + M*post['sa2'],post['mb']**2 + L*post['sb2']))/sigma2))
return U[:,:pos], np.diag(d), V[:,:pos], post
def VBsigma2(sigma2,L,M,cacb,s,residual):
H = len(s)
thresh_term = (L+M + sigma2/cacb**2)/2
threshold = np.sqrt( sigma2 * (thresh_term + np.sqrt(thresh_term**2 - L*M) ))
pos = np.sum(s>threshold)
d = np.multiply(s[:pos],
1 - np.multiply(sigma2/(2*s[:pos]**2),
L+M+np.sqrt( (M-L)**2 + 4*s[:pos]**2/cacb**2 )))
zeta = sigma2/(2*L*M) * (L+M+sigma2/cacb**2 - np.sqrt((L+M+sigma2/cacb**2)**2 - 4*L*M))
post_ma = np.zeros(H)
post_mb = np.zeros(H)
post_sa2 = cacb * (1-L*zeta/sigma2) * np.ones(H)
post_sb2 = cacb * (1-M*zeta/sigma2) * np.ones(H)
delta = cacb/sigma2 * (s[:pos]-d- L*sigma2/s[:pos])
post_ma[:pos] = np.sqrt(np.multiply(d, delta))
post_mb[:pos] = np.sqrt(np.divide(d, delta))
post_sa2[:pos] = np.divide(sigma2*delta, s[:pos])
post_sb2[:pos] = np.divide(sigma2, np.multiply(delta, s[:pos]))
F = 0.5*(L*M*np.log(2*np.pi*sigma2) + (residual+np.sum(s**2))/sigma2 - (L+M)*H
+ np.sum(M*np.log(cacb/post_sa2) + L*np.log(cacb/post_sb2)
+ (post_ma**2 + M*post_sa2)/cacb + (post_mb**2 + L*post_sb2)/cacb
+ (-2 * np.multiply(np.multiply(post_ma, post_mb), s)
+ np.multiply(post_ma**2 + M*post_sa2,post_mb**2 + L*post_sb2))/sigma2))
return F
def EVBMF(Y, sigma2=None, H=None):
"""Implementation of the analytical solution to Empirical Variational Bayes Matrix Factorization.
This function can be used to calculate the analytical solution to empirical VBMF.
This is based on the paper and MatLab code by Nakajima et al.:
"Global analytic solution of fully-observed variational Bayesian matrix factorization."
Notes
-----
If sigma2 is unspecified, it is estimated by minimizing the free energy.
If H is unspecified, it is set to the smallest of the sides of the input Y.
Attributes
----------
Y : numpy-array
Input matrix that is to be factorized. Y has shape (L,M), where L<=M.
sigma2 : int or None (default=None)
Variance of the noise on Y.
H : int or None (default = None)
Maximum rank of the factorized matrices.
Returns
-------
U : numpy-array
Left-singular vectors.
S : numpy-array
Diagonal matrix of singular values.
V : numpy-array
Right-singular vectors.
post : dictionary
Dictionary containing the computed posterior values.
References
----------
.. [1] Nakajima, Shinichi, et al. "Global analytic solution of fully-observed variational Bayesian matrix factorization." Journal of Machine Learning Research 14.Jan (2013): 1-37.
.. [2] Nakajima, Shinichi, et al. "Perfect dimensionality recovery by variational Bayesian PCA." Advances in Neural Information Processing Systems. 2012.
"""
L,M = Y.shape #has to be L<=M
if H is None:
H = L
alpha = L/M
tauubar = 2.5129*np.sqrt(alpha)
#SVD of the input matrix, max rank of H
U,s,V = np.linalg.svd(Y)
U = U[:,:H]
s = s[:H]
V = V[:H].T
#Calculate residual
residual = 0.
if H<L:
residual = np.sum(np.sum(Y**2)-np.sum(s**2))
#Estimation of the variance when sigma2 is unspecified
if sigma2 is None:
xubar = (1+tauubar)*(1+alpha/tauubar)
eH_ub = int(np.min([np.ceil(L/(1+alpha))-1, H]))-1
upper_bound = (np.sum(s**2)+residual)/(L*M)
lower_bound = np.max([s[eH_ub+1]**2/(M*xubar), np.mean(s[eH_ub+1:]**2)/M])
scale = 1.#/lower_bound
s = s*np.sqrt(scale)
residual = residual*scale
lower_bound = lower_bound*scale
upper_bound = upper_bound*scale
sigma2_opt = minimize_scalar(EVBsigma2, args=(L,M,s,residual,xubar), bounds=[lower_bound, upper_bound], method='Bounded')
sigma2 = sigma2_opt.x
print sigma2
#Threshold gamma term
threshold = np.sqrt(M*sigma2*(1+tauubar)*(1+alpha/tauubar))
pos = np.sum(s>threshold)
#Formula (15) from [2]
d = np.multiply(s[:pos]/2, 1-np.divide((L+M)*sigma2, s[:pos]**2) + np.sqrt((1-np.divide((L+M)*sigma2, s[:pos]**2))**2 -4*L*M*sigma2**2/s[:pos]**4) )
#Computation of the posterior
post = {}
post['ma'] = np.zeros(H)
post['mb'] = np.zeros(H)
post['sa2'] = np.zeros(H)
post['sb2'] = np.zeros(H)
post['cacb'] = np.zeros(H)
tau = np.multiply(d, s[:pos])/(M*sigma2)
delta = np.multiply(np.sqrt(np.divide(M*d, L*s[:pos])), 1+alpha/tau)
post['ma'][:pos] = np.sqrt(np.multiply(d, delta))
post['mb'][:pos] = np.sqrt(np.divide(d, delta))
post['sa2'][:pos] = np.divide(sigma2*delta, s[:pos])
post['sb2'][:pos] = np.divide(sigma2, np.multiply(delta, s[:pos]))
post['cacb'][:pos] = np.sqrt(np.multiply(d, s[:pos])/(L*M))
post['sigma2'] = sigma2
post['F'] = 0.5*(L*M*np.log(2*np.pi*sigma2) + (residual+np.sum(s**2))/sigma2
+ np.sum(M*np.log(tau+1) + L*np.log(tau/alpha +1) - M*tau))
return U[:,:pos], np.diag(d), V[:,:pos], post
def EVBsigma2(sigma2,L,M,s,residual,xubar):
H = len(s)
alpha = L/M
x = s**2/(M*sigma2)
z1 = x[x>xubar]
z2 = x[x<=xubar]
tau_z1 = tau(z1, alpha)
term1 = np.sum(z2 - np.log(z2))
term2 = np.sum(z1 - tau_z1)
term3 = np.sum( np.log( np.divide(tau_z1+1, z1)))
term4 = alpha*np.sum(np.log(tau_z1/alpha+1))
obj = term1+term2+term3+term4+ residual/(M*sigma2) + (L-H)*np.log(sigma2)
return obj
def phi0(x):
return x-np.log(x)
def phi1(x, alpha):
return np.log(tau(x,alpha)+1) + alpha*np.log(tau(x,alpha)/alpha + 1) - tau(x,alpha)
def tau(x, alpha):
return 0.5 * (x-(1+alpha) + np.sqrt((x-(1+alpha))**2 - 4*alpha))