-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathHGNN.py
72 lines (51 loc) · 2.84 KB
/
HGNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch as t
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
class HGNN(nn.Module):
def __init__(self, userNum, itemNum, \
user_feat, user_social_feat, item_in_feat, hide_dim,\
layer="[16,16,16]", alpha=0.1, dgi=True):
super(HGNN, self).__init__()
self.userNum = userNum
self.itemNum = itemNum
self.hide_dim = hide_dim
initializer = nn.init.xavier_uniform_
self.layer = eval(layer)
self.layerNum = len(self.layer)
self.user1_w = nn.Linear(user_feat, int(self.hide_dim/2), bias=False)
self.user2_w = nn.Linear(user_social_feat, int(self.hide_dim/2), bias=False)
initializer(self.user1_w.weight)
initializer(self.user2_w.weight)
self.item_w = nn.Linear(item_in_feat, hide_dim, bias=False)
initializer(self.item_w.weight)
self.weight_dict = nn.ParameterDict()
for k in range(1, self.layerNum):
if k == 0:
self.weight_dict.update({'user_w%d'%k: nn.Parameter(initializer(t.empty(self.hide_dim, self.layer[k])))})
self.weight_dict.update({'item_w%d'%k: nn.Parameter(initializer(t.empty(self.hide_dim, self.layer[k])))})
else:
self.weight_dict.update({'user_w%d'%k: nn.Parameter(initializer(t.empty(self.layer[k-1], self.layer[k])))})
self.weight_dict.update({'item_w%d'%k: nn.Parameter(initializer(t.empty(self.layer[k-1], self.layer[k])))})
# self.act = t.nn.LeakyReLU(alpha)
self.act = t.nn.PReLU()
def forward(self, user_social_feat, user_feat, item_feat, raitng_adj):
item_e = self.item_w(item_feat)
user_e1 = self.user1_w(user_feat)
user_e2 = self.user2_w(user_social_feat)
user_e = t.cat((user_e1, user_e2), dim=1)
ego_embeddings = t.cat((user_e, item_e), dim=0)
embeddings = self.act(t.spmm(raitng_adj, ego_embeddings))
# orignal embedding
all_user_embeddings = [embeddings[: self.userNum]]
all_item_embeddings = [embeddings[self.userNum: ]]
for k in range(1, self.layerNum):
tmp_user_embed = t.mm(all_user_embeddings[-1], self.weight_dict['user_w%d'%k])
tmp_item_embed = t.mm(all_item_embeddings[-1], self.weight_dict['item_w%d'%k])
ego_embeddings = t.cat((tmp_user_embed, tmp_item_embed), dim=0)
embeddings = self.act(t.spmm(raitng_adj, ego_embeddings))
all_user_embeddings += [embeddings[: self.userNum]]
all_item_embeddings += [embeddings[self.userNum: ]]
user_embedding = t.cat(all_user_embeddings, 1)
item_embedding = t.cat(all_item_embeddings, 1)
return user_embedding, item_embedding