-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPartiality.v
477 lines (390 loc) · 15 KB
/
Partiality.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
From Coq Require Import Arith ZArith Psatz Bool String List.
From CDF Require Import Sequences IMP.
(** * 6. Semantics of divergence, second part *)
(** ** 6.5. The partiality monad *)
(** The type [delay A] represents computations that produce a result
of type [A] if they terminate, but can also diverge. *)
CoInductive delay (A: Type) : Type :=
| now: A -> delay A
| later: delay A -> delay A.
Arguments now [A].
Arguments later [A].
(** The computation of type [A] that always diverges. *)
CoFixpoint omega (A: Type) : delay A := later (omega A).
(** A few technical definitions to prove equalities between computations. *)
Lemma u_delay:
forall {A: Type} (x: delay A),
x = match x with now v => now v | later y => later y end.
Proof. destruct x; auto. Qed.
Ltac unroll_delay X := rewrite (u_delay X); simpl.
Ltac samedelay :=
match goal with
[ |- ?X = ?Y ] => rewrite (u_delay X); simpl; auto
end.
(** Terminating on a value [v] is captured by an inductive predicate
[terminates x v].
Diverging is captured by a coinductive predicate [diverges x]. *)
Inductive terminates {A: Type} : delay A -> A -> Prop :=
| terminates_now: forall v, terminates (now v) v
| terminates_later: forall x v, terminates x v -> terminates (later x) v.
CoInductive diverges {A: Type} : delay A -> Prop :=
| diverges_later: forall x, diverges x -> diverges (later x).
Lemma terminates_unique: forall (A: Type) (x: delay A) (v1 v2: A),
terminates x v1 -> terminates x v2 -> v1 = v2.
Proof.
intros until v2; intros T; revert x v1 T v2. induction 1; intros.
- inversion H; subst; auto.
- inversion H; subst; auto.
Qed.
Lemma terminates_diverges_excl: forall (A: Type) (x: delay A) (v: A),
terminates x v -> diverges x -> False.
Proof.
induction 1; intros D; inversion D; auto.
Qed.
(** Example of use: computing the remainder of Euclidean division. *)
CoFixpoint remainder (a b: nat) : delay nat :=
if a <? b then now a else later (remainder (a - b) b).
Lemma remainder_terminates:
forall a b, b > 0 ->
exists q r, terminates (remainder a b) r /\ r < b /\ a = b * q + r.
Proof.
induction a using (well_founded_ind lt_wf). intros.
unroll_delay (remainder a b). destruct (Nat.ltb_spec a b).
- exists 0, a. split. constructor. split. auto. lia.
- assert (LT: a - b < a) by lia.
destruct (H _ LT b H0) as (q & r & P & Q & R).
exists (S q), r. split. constructor; auto. split. auto. lia.
Qed.
Lemma remainder_diverges:
forall a, diverges (remainder a 0).
Proof.
cofix CIH; intros a. unroll_delay (remainder a 0). constructor. apply CIH.
Qed.
(** Equitermination of two computations. *)
Section EQUITERMINATION.
Context {A: Type}.
CoInductive equi: delay A -> delay A -> Prop :=
| equi_terminates: forall x y v, terminates x v -> terminates y v -> equi x y
| equi_later: forall x y, equi x y -> equi (later x) (later y).
Notation "x == y" := (equi x y) (at level 70, no associativity).
Lemma equi_refl: forall x, x == x.
Proof.
cofix COINDHYP; intros; destruct x.
- apply equi_terminates with a; constructor.
- apply equi_later. apply COINDHYP.
Qed.
Lemma equi_refl': forall x y, x = y -> x == y.
Proof.
intros; subst; apply equi_refl.
Qed.
Lemma equi_sym: forall x y, x == y -> y == x.
Proof.
cofix COINDHYP; intros x y E; inversion E; subst.
- apply equi_terminates with v; auto.
- apply equi_later; apply COINDHYP; auto.
Qed.
Lemma terminates_equi:
forall x v, terminates x v -> forall y, x == y -> terminates y v.
Proof.
induction 1; intros y E; inversion E; subst.
- inversion H; auto.
- inversion H0; subst.
assert (v0 = v) by (eapply terminates_unique; eauto). subst v0; auto.
- constructor; eauto.
Qed.
Lemma equi_trans: forall x y z, x == y -> y == z -> x == z.
Proof.
cofix COINDHYP; intros x y z E1 E2; inversion E1; subst.
- apply equi_terminates with v. auto. apply terminates_equi with y; auto.
- inversion E2; subst.
+ inversion H0; subst. apply equi_terminates with v; auto. constructor.
apply terminates_equi with y0; auto using equi_sym.
+ constructor. apply COINDHYP with y0; auto.
Qed.
Lemma eq_later: forall x, later x == x.
Proof.
cofix COINDHYP; intros x. destruct x.
- apply equi_terminates with a; repeat constructor.
- apply equi_later. apply COINDHYP.
Qed.
Lemma diverges_equi: forall x y, x == y -> diverges x -> diverges y.
Proof.
cofix COINDHYP; intros. inversion H; subst.
- elim (terminates_diverges_excl A x v); auto.
- inversion H0; subst. constructor. eauto.
Qed.
(** Weak bisimulation is another presentation of equitermination,
with constructors [bisim_left] and [bisim_right] that enable us
to "skip" a [later] constructor on one side but not on the other side.
This simplifies many proofs. However, we must prevent
[bisim_left] or [bisim_right] to be applied infinitely often,
because this would make [now v] and [bottom] bisimilar.
The extra argument of type [nat] limits the number of consecutive
applications of the [bisim_left] and [bisim_right] rules.
It is reset to an arbitrarily high value when [bisim_both] is applied. *)
CoInductive bisim: nat -> delay A -> delay A -> Prop :=
| bisim_now: forall n v,
bisim n (now v) (now v)
| bisim_both: forall m n x y,
bisim m x y -> bisim n (later x) (later y)
| bisim_left: forall n x y,
bisim n x y -> bisim (S n) (later x) y
| bisim_right: forall n x y,
bisim n x y -> bisim (S n) x (later y).
Lemma bisim_inv: forall n x y,
bisim n x y ->
(exists v, terminates x v /\ terminates y v)
\/ (exists n' x' y', x = later x' /\ y = later y' /\ bisim n' x' y').
Proof.
induction n using lt_wf_ind.
intros x y B; inversion B; subst.
- left; exists v; split; constructor.
- right; exists m, x0, y0; auto.
- edestruct (H n0) as [(v & T1 & T2) | (n' & x' & y' & E1 & E2 & B')].
lia. eauto.
+ left; exists v; auto using terminates_later.
+ right. exists (S n'), (later x'), y'; intuition auto.
congruence. apply bisim_left; auto.
- edestruct (H n0) as [(v & T1 & T2) | (n' & x' & y' & E1 & E2 & B')].
lia. eauto.
+ left; exists v; auto using terminates_later.
+ right. exists (S n'), x', (later y'); intuition auto.
congruence. apply bisim_right; auto.
Qed.
Lemma bisim_equi: forall n x y,
bisim n x y -> x == y.
Proof.
cofix CIH; intros.
destruct (bisim_inv _ _ _ H)
as [(v & T1 & T2) | (n' & x' & y' & E1 & E2 & B')].
- apply equi_terminates with v; auto.
- subst. constructor. eauto.
Qed.
End EQUITERMINATION.
Notation "x == y" := (equi x y) (at level 70, no associativity).
(** The monad structure. *)
Definition ret := now.
CoFixpoint bind {A B: Type} (x: delay A) (f: A -> delay B) : delay B :=
match x with
| now v => later (f v)
| later y => later (bind y f)
end.
Remark bind_now: forall (A B: Type) (v: A) (f: A -> delay B),
bind (now v) f = later (f v).
Proof. intros; samedelay. Qed.
Remark bind_later: forall (A B: Type) (x: delay A) (f: A -> delay B),
bind (later x) f = later (bind x f).
Proof. intros; samedelay. Qed.
(** The three monadic laws hold up to equitermination. *)
Lemma mon_law_1: forall (A B: Type) (v: A) (f: A -> delay B),
bind (now v) f == f v.
Proof.
intros. rewrite bind_now. apply eq_later.
Qed.
Lemma mon_law_2: forall (A: Type) (m: delay A),
bind m (@ret A) == m.
Proof.
cofix CIH; intros. destruct m.
- rewrite bind_now. apply eq_later.
- rewrite bind_later. constructor. apply CIH.
Qed.
Lemma mon_law_3: forall (A B C: Type) (m: delay A) (f: A -> delay B) (g: B -> delay C),
bind (bind m f) g == bind m (fun x => bind (f x) g).
Proof.
cofix CIH. intros; destruct m.
- rewrite ! bind_now, bind_later. apply equi_refl.
- rewrite ! bind_later. constructor. apply CIH.
Qed.
(** [bind] is compatible with equitermination [==]. *)
Lemma bind_terminates_l:
forall (A: Type) (m: delay A) (v: A), terminates m v ->
forall (B: Type) (f: A -> delay B), bind m f == f v.
Proof.
induction 1; intros.
- apply mon_law_1.
- rewrite bind_later. eapply equi_trans. apply eq_later. apply IHterminates.
Qed.
Lemma bind_context:
forall (A B: Type) (m1 m2: delay A) (f1 f2: A -> delay B),
m1 == m2 ->
(forall v, f1 v == f2 v) ->
bind m1 f1 == bind m2 f2.
Proof.
cofix CIH; intros. inversion H; subst.
- apply equi_trans with (f1 v). apply bind_terminates_l; auto.
apply equi_trans with (f2 v). auto.
apply equi_sym. apply bind_terminates_l; auto.
- rewrite ! bind_later. constructor. apply CIH; auto.
Qed.
(** ** 6.6. The monadic metalanguage *)
(** Here is the (coinductive) abstract syntax that expresses computations
in the partiality monad. *)
CoInductive mon (A: Type): Type :=
| Ret: A -> mon A
| Later: mon A -> mon A
| Bind: forall {B: Type}, mon B -> (B -> mon A) -> mon A.
Arguments Ret [A].
Arguments Later [A].
Arguments Bind [A B].
Lemma u_mon:
forall {A: Type} (x: mon A),
x = match x with Ret v => Ret v | Bind y f => Bind y f | Later m => Later m end.
Proof. destruct x; auto. Qed.
(** The semantics of an abstract syntax tree (of type [mon A])
is defined by translation to the computation (of type [delay A])
denoted by the syntax tree. *)
CoFixpoint run {A: Type} (m: mon A) : delay A :=
match m with
| Ret v => now v
| Later m => later (run m)
| Bind (Ret v) f => later (run (f v))
| Bind (Later m) f => later (run (Bind m f))
| Bind (Bind m f) g => later (run (Bind m (fun x => Bind (f x) g)))
end.
Lemma run_Ret: forall (A: Type) (v: A), run (Ret v) = now v.
Proof. intros; samedelay. Qed.
Lemma run_Later: forall (A: Type) (m: mon A), run (Later m) = later (run m).
Proof. intros; samedelay. Qed.
Lemma run_Bind_Ret: forall (A B: Type) (v: A) (f: A -> mon B),
run (Bind (Ret v) f) = later (run (f v)).
Proof. intros; samedelay. Qed.
Lemma run_Bind_Later: forall (A B: Type) (m: mon A) (f: A -> mon B),
run (Bind (Later m) f) = later (run (Bind m f)).
Proof. intros; samedelay. Qed.
Lemma run_Bind_Bind: forall (A B C: Type) (m: mon A) (f: A -> mon B) (g: B -> mon C),
run (Bind (Bind m f) g) = later (run (Bind m (fun x => Bind (f x) g))).
Proof. intros; samedelay. Qed.
(** Some of our proofs use continuations, which can also be viewed as
contexts. A context is a list of functions [A -> mon B] that
can be composed using the "bind" operator. *)
Inductive cont: Type -> Type -> Type :=
| K0: forall (A: Type), cont A A
| Kbind: forall {A B C: Type} (f: A -> mon B) (k: cont B C), cont A C.
Fixpoint insert_cont {A B: Type} (k: cont A B):
forall {C: Type}, (B -> mon C) -> (A -> mon C) :=
match k in cont A B
return forall {C: Type}, (B -> mon C) -> (A -> mon C) with
| K0 A => fun C g => g
| Kbind f k => fun D g a => Bind (f a) (insert_cont k g)
end.
(** The three monadic laws. *)
Lemma Mon_law_1: forall (A B: Type) (v: A) (f: A -> mon B),
run (Bind (Ret v) f) == run (f v).
Proof.
intros. rewrite run_Bind_Ret; apply eq_later.
Qed.
Lemma Mon_law_3: forall (A B C: Type) (m: mon A) (f: A -> mon B) (g: B -> mon C),
run (Bind (Bind m f) g) == run (Bind m (fun x => Bind (f x) g)).
Proof.
intros. rewrite run_Bind_Bind; apply eq_later.
Qed.
(** The second monadic law is difficult to prove. We use a bisimulation
approach based on the following relation. *)
Inductive eta_match: forall {A: Type}, nat -> mon A -> mon A -> Prop :=
| eta_match_1: forall {A: Type} (m: mon A),
eta_match 1%nat (Bind m (@Ret _)) m
| eta_match_2: forall {A B C: Type} (m: mon A) (k: cont A B) (g: B -> mon C),
eta_match 0%nat (Bind m (insert_cont k (fun x => Bind (g x) (@Ret _))))
(Bind m (insert_cont k g)).
Lemma Mon_law_2_aux:
forall (A: Type) n (x y: mon A),
eta_match n x y -> bisim n (run x) (run y).
Proof.
cofix CIH; destruct 1.
- destruct m.
+ rewrite run_Bind_Ret, run_Ret.
apply bisim_left. apply bisim_now.
+ rewrite run_Bind_Later, run_Later.
eapply bisim_both. apply CIH. apply eta_match_1.
+ rewrite run_Bind_Bind.
apply bisim_left. apply CIH.
apply eta_match_2 with (k := K0 _).
- destruct m.
+ rewrite ! run_Bind_Ret. destruct k; simpl.
* eapply bisim_both. apply CIH. apply eta_match_1.
* eapply bisim_both. apply CIH. apply eta_match_2.
+ rewrite ! run_Bind_Later.
eapply bisim_both. apply CIH. apply eta_match_2.
+ rewrite ! run_Bind_Bind.
eapply bisim_both. apply CIH.
apply (eta_match_2 m (Kbind m0 k)).
Qed.
Lemma Mon_law_2:
forall (A: Type) (m: mon A), run (Bind m (@Ret A)) == run m.
Proof.
intros. eapply bisim_equi. apply Mon_law_2_aux. apply eta_match_1.
Qed.
(** It follows that the denotation of a [Bind] is the [bind] of the
denotations. *)
Lemma run_Bind_aux:
forall (A B C: Type) (m: mon A) (k: cont A B) (f: B -> mon C),
run (Bind m (insert_cont k f)) ==
bind (run (Bind m (insert_cont k (@Ret _)))) (fun x => run (f x)).
Proof.
cofix CIH; intros.
destruct m.
- rewrite ! run_Bind_Ret. destruct k; cbn.
+ rewrite run_Ret, bind_later, bind_now.
constructor. apply equi_sym; apply eq_later.
+ rewrite bind_later. apply equi_later. apply CIH.
- rewrite ! run_Bind_Later, bind_later.
apply equi_later. apply CIH.
- rewrite ! run_Bind_Bind, bind_later.
apply equi_later. apply CIH with (k := Kbind m0 k).
Qed.
Theorem run_Bind:
forall (A B: Type) (m: mon A) (f: A -> mon B),
run (Bind m f) == bind (run m) (fun x => run (f x)).
Proof.
intros.
change (Bind m f) with (Bind m (insert_cont (K0 _) f)).
eapply equi_trans. apply run_Bind_aux. apply bind_context.
apply Mon_law_2.
intros; apply equi_refl.
Qed.
(** ** 6.7. Application: an interpreter / denotational semantics for IMP *)
CoFixpoint cinterp (c: com) (s: store) : mon store :=
match c with
| SKIP => Ret s
| ASSIGN x a => Ret (update x (aeval a s) s)
| SEQ c1 c2 => Bind (cinterp c1 s) (cinterp c2)
| IFTHENELSE b c1 c2 =>
Later (cinterp (if beval b s then c1 else c2) s)
| WHILE b c =>
if beval b s then Bind (cinterp c s) (cinterp (WHILE b c))
else Ret s
end.
(** The denotation of a command is the execution of its interpretation. *)
Definition denot (c: com) (s: store) : delay store := run (cinterp c s).
(** The denotational equations for IMP are satisfied, up to equitermination. *)
Lemma denot_skip: forall s,
denot SKIP s == now s.
Proof.
intros. unroll_delay (denot SKIP s). apply equi_refl.
Qed.
Lemma denot_assign: forall x a s,
denot (ASSIGN x a) s == now (update x (aeval a s) s).
Proof.
intros. unroll_delay (denot (ASSIGN x a) s). apply equi_refl.
Qed.
Lemma denot_seq: forall c1 c2 s,
denot (SEQ c1 c2) s == bind (denot c1 s) (denot c2).
Proof.
unfold denot; intros. rewrite (u_mon (cinterp (c1;;c2) s)); cbn.
apply run_Bind.
Qed.
Lemma denot_ifthenelse: forall b c1 c2 s,
denot (IFTHENELSE b c1 c2) s == if beval b s then denot c1 s else denot c2 s.
Proof.
unfold denot; intros. rewrite (u_mon (cinterp (IFTHENELSE b c1 c2) s)); cbn.
rewrite run_Later. destruct (beval b s); apply eq_later.
Qed.
Lemma denot_while: forall b c s,
denot (WHILE b c) s ==
if beval b s then bind (denot c s) (denot (WHILE b c)) else now s.
Proof.
unfold denot; intros. rewrite (u_mon (cinterp (WHILE b c) s)); cbn.
destruct (beval b s).
- apply run_Bind.
- rewrite run_Ret. apply equi_refl.
Qed.