-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSpinors.m
1026 lines (782 loc) · 59.8 KB
/
Spinors.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* ::Package:: *)
(************************************************************************)
(* This file was generated automatically by the Mathematica front end. *)
(* It contains Initialization cells from a Notebook file, which *)
(* typically will have the same name as this file except ending in *)
(* ".nb" instead of ".m". *)
(* *)
(* This file is intended to be loaded into the Mathematica kernel using *)
(* the package loading commands Get or Needs. Doing so is equivalent *)
(* to using the Evaluate Initialization Cells menu command in the front *)
(* end. *)
(* *)
(* DO NOT EDIT THIS FILE. This entire file is regenerated *)
(* automatically each time the parent Notebook file is saved in the *)
(* Mathematica front end. Any changes you make to this file will be *)
(* overwritten. *)
(************************************************************************)
xAct`Spinors`$xTensorVersionExpected={"1.1.0",{2013,7,1}};
xAct`Spinors`$Version={"1.0.5",{2014,2,15}}
(* Spinors: spinor calculus in General Relativity *)
(* Copyright (C) 2006-2012 Alfonso Garcia-Parrado Gomez-Lobo and Jose M. Martin-Garcia *)
(* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License,or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place-Suite 330, Boston, MA 02111-1307, USA.
*)
(* :Title: Spinors *)
(* :Author: Alfonso Garcia-Parrado Gomez-Lobo and Jose M. Martin-Garcia *)
(* :Summary: spinor calculus in General Relativity *)
(* :Brief Discussion:
- Spinors extends xAct to perform spinor computations on 4d Lorentzian spacetimes.
- Defines spin structures, spinors, spin connections and their curvature spinors.
- Allows conversion from tensors to spinors and viceversa.
- The documentation explains how to construct the Newman-Penrose and
Geroch-Held-Penrose formalism.
*)
(* :Context: xAct`Spinors` *)
(* :Package Version: 1.0.4 *)
(* :Copyright: Alfonso Garcia-Parrado Gomez-Lobo and Jose M. Martin-Garcia (2006-2013) *)
(* :History: See Spinors.History *)
(* :Keywords: *)
(* :Source: Spinors.nb *)
(* :Warning: *)
(* :Mathematica Version: 6.0 and later *)
(* :Limitations:
- 4d Lorentzian spacetime only *)
With[{xAct`Spinors`Private`SpinorsSymbols=DeleteCases[Join[Names["xAct`Spinors`*"],Names["xAct`Spinors`Private`*"]],"$Version"|"xAct`Spinors`$Version"|"$xTensorVersionExpected"|"xAct`Spinors`$xTensorVersionExpected"]},
Unprotect/@xAct`Spinors`Private`SpinorsSymbols;
Clear/@xAct`Spinors`Private`SpinorsSymbols;
]
If[Unevaluated[xAct`xCore`Private`$LastPackage]===xAct`xCore`Private`$LastPackage,xAct`xCore`Private`$LastPackage="xAct`Spinors`"];
BeginPackage["xAct`Spinors`",{"xAct`xTensor`","xAct`xPerm`","xAct`xCore`"}]
If[Not@OrderedQ@Map[Last,{xAct`Spinors`$xTensorVersionExpected,xAct`xTensor`$Version}],Throw@Message[General::versions,"xTensor",xAct`xTensor`$Version,xAct`Spinors`$xTensorVersionExpected]]
Print[xAct`xCore`Private`bars]
Print["Package xAct`Spinors` version ",xAct`Spinors`$Version[[1]],", ",xAct`Spinors`$Version[[2]]];
Print["CopyRight (C) 2006-2012, Alfonso Garcia-Parrado Gomez-Lobo and Jose M. Martin-Garcia, under the General Public License."];
Off[General::shdw]
xAct`Spinors`Disclaimer[]:=Print["These are points 11 and 12 of the General Public License:\n\nBECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM `AS IS\.b4 WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.\n\nIN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES."]
On[General::shdw]
If[xAct`xCore`Private`$LastPackage==="xAct`Spinors`",
Unset[xAct`xCore`Private`$LastPackage];
Print[xAct`xCore`Private`bars];
Print["These packages come with ABSOLUTELY NO WARRANTY; for details type Disclaimer[]. This is free software, and you are welcome to redistribute it under certain conditions. See the General Public License for details."];
Print[xAct`xCore`Private`bars]]
$PrePrint=ScreenDollarIndices;
SetOptions[ContractMetric,AllowUpperDerivatives->True]
SetOptions[MakeRule,MetricOn->All,ContractMetrics->True]
(* Definition of spin structures *)
DefSpinStructure::usage="DefSpinStructure[g, VB, {A,B,C,...}, epsilon, sigma, CDe, options] defines a spin structure on the manifold in which the metric g[-a, -b] is defined, creating the inner vbundle VB with abstract indices {A,B,C,...}. Currently it only works on 4-dimensional Lorentzian manifolds, and so VB is defined as 2-dimensional and complex. The spin metric is epsilon[-A, -B] and the soldering form is sigma[a, -B, -B\[Dagger]]. The spin covariant derivative CDe, compatible with sigma and epsilon, is defined on this vbundle extending the Levi-Civita connection of g. We adopt the convention of taking the head of the soldering form as the symbol representing the spin structure.";
UndefSpinStructure::usage="UndefSpinStructure[sp] removes the spin structure associated to the symbol sp and all its dependent objects (servants). The symbol sp can be the soldering form, the vector bundle or the extended covariant derivative.";
$SolderingForms::usage="$SolderingForms is a list containing the set of soldering forms (spin structures) existing in the session.";
SpinorPrefix::usage="SpinorPrefix is an option for DefSpinStructure giving the symbol to be prepended when constructing the spinor equivalent of a tensor or viceversa. By default it is Identity, which is replaced by the soldering form defined with the SpinStructure. SpinorPrefix[sigma] stores that symbol as an upvalue for the soldering form sigma.";
SpinorMark::usage="SpinorMark is an option for DefSpinStructure specifying how to modify the PrintAs string of a tensor when constructing its spinor equivalent. It can be a string (to be prepended to the PrintAs string) or a function (acting on it). By default it is PrintAs, which is replaced by a delayed call to PrintAs[sigma] for the soldering form sigma. SpinorMark[sigma] stores the value of the option as an upvalue for the soldering form sigma.";
DefSpinor::usage="DefSpinor is a renaming of DefTensor with the option Dagger->Complex, for the sake of clarity.";
UndefSpinor::usage="UndefSpinor is a renaming of UndefTensor, for the sake of clarity.";
Sigma::usage="Sigma[sigma] is automatically transformed into the symbol Sigmasigma, where sigma is a soldering form. The symbol Sigmasigma is the head used to represent the quantity sigma[a,-A,-A\[Dagger]]sigma[b,-B,A\[Dagger]] which often appears in the transformation of spinor expressions into tensor ones.";
PrintDaggerAs::usage="PrintDaggerAs is an optional function for DefSpinor that specifies how the PrintAs string for the complex conjugate spinor should be generated from the PrintAs string for the original spinor.";
AddDagger::usage="Built-in option value for PrintDaggerAs. This option value simply appends the $DaggerCharacter to the string chosen for PrintAs.";
AddBar::usage="Built-in option value for PrintDaggerAs. This option value adds an overbar to the string chosen for PrintAs.";
AddTilde::usage="Built-in option value for PrintDaggerAs. This option value adds a tilde on top of the string chosen for PrintAs.";
(* Info functions *)
TangentBundleOfSolderingForm::usage="TangentBundleOfSolderingForm[sigma] returns the tangent bundle on which the soldering sigma has been defined.";
SpinMetricOfSolderingForm::usage="SpinMetricOfSolderingForm[sigma] returns the antisymmetric spin metric associated to the soldering form sigma.";
VBundleOfSolderingForm::usage="VBundleOfSolderingForm[sigma] returns the inner vbundle (spin bundle) on which the soldering form sigma has been defined.";
SolderingFormOfVBundle::usage="SolderingFormOfVBundle[vbundle] returns the soldering form defined on the vbundle, or Null otherwise.";
SpinCovDsOfSolderingForm::usage="SpinCovDsOfSolderingForm[sigma] returns a list of all covariant derivatives which are compatible with the soldering form sigma.";
SolderingFormOfSpinCovD::usage="SolderingFormOfSpinCovD[SpinCovD] returns the soldering form which is compatible with the covariant derivative SpinCovD";
(* Relations between tensors and spinors *)
DefSpinorOfTensor::usage="DefSpinorOfTensor[sp[inds1],tn[inds2],sigma] defines the spinor counterpart sp[inds1] of the already present tensor tn[inds2] with respect to the spin structure associated to the soldering form sigma. Spinor indices in the sequence inds1 must be sorted according to the pattern index,Dagger[index]. The symmetries of the spinor sp are automatically computed from those of the tensor tn.";
DefTensorOfSpinor::usage="DefTensorOfSpinor[tn[inds1],sp[inds2],sigma] defines the tensor counterpart tn[inds1] of the already present spinor sp[inds2] with respect to the spin structure associated to the soldering form sigma. Spinor indices in the sequence inds2 must be sorted according to the pattern index,Dagger[index]. The symmetries of the tensor tn are automatically computed from those of the spinor sp.";
SpinorOfTensor::usage="SpinorOfTensor[tensor,sigma] gives the spinor counterpart of the tensor named tensor with respect to the spin structure associated to the soldering for sigma.";
TensorOfSpinor::usage="TensorOfSpinor[spinor,sigma] gives the tensor counterpart of the spinor named spinor with respect to the spin structure associated to the soldering for sigma.";
(* Decomposition of a spinor into irreducible parts *)
IrreducibleDecomposition::usage="IrreducibleDecomposition[spinor[inds]] returns the decomposition of the spinor spinor[inds] into totally symmetric irreducible spinors. These are multiplied by apropriate factors of the antisymmetric metric. The irreducible spinors are constructed by appending the TF to the head spinor and using label indices to distinguish the different irreducible spinors intervening in the decomposition";
(* The soldering form *)
PutSolderingForm::usage="PutSolderingForm[expr, inds, sigma] contracts free indices of expr with the soldering form sigma. The free indices are specified by means of the second argument, which can be given in several formats: an index, an IndexList of indices, a conjugated pair Pair[A,A\[Dagger]], a vbundle, a tensor, a covd or an IndicesOf expression with selectors (see xTensor documentation). Both the second and third arguments are sequentially folded over lists. PutSolderingForm[expr, inds] is converted into PutSolderingForm[expr, inds, $SolderingForms]. PutSolderingForm[expr] is converted into PutSolderingForm[expr, IndicesOf[]], adding soldering forms to all possible indices and pairs.";
ContractSolderingForm::usage="ContracSolderingForm[expr, inds] replaces the contracted product of subexpressions in expr with one or several soldering forms by a new expression in which tensor or spinor indices have been inserted appropriately. This process may require the definition of a new tensor or spinor which is handled by the system automatically. The second argument enables us to single out specific soldering forms by selecting the dummy indices in the contracted product, and can be given in several formats: an index, an IndexList of indices, a vbundle, a tensor or an IndicesOf expression with selectors (see xTensor documentation).";
SeparateSolderingForm::usage="SeparateSolderingForm[sigma, basis][expr, inds] separates from expr a number of soldering sigma, creating new dummy indices in the given basis. This may require the definition of a new tensor or spinor, which is carried out automatically. The indices to separate are specified through the inds argument, which can be given in several formats: an index, an IndexList of indices, a vbundle, a tensor, a covd, or an IndicesOf expression with selectors (see xTensor documentation). The default for basis is AIndex, which introduces abstract dummy indices. The sigma argument is folded over lists, and its default is $SolderingForm. SeparateSolderingForm[][expr] is converted into SeparateSolderingForm[][expr, IndicesOf[]], separating all possible soldering forms from expr.";
(* Spinor derivatives and curvature spinors *)
DefSpinCovD::usage="DefSpinCovD[cd[-a],sigma,{post,pre}] defines a spin-compatible covariant derivative cd with respect to the spin structure associated to the soldering form sigma. This covariant derivative will be represented in StandardForm using the character pre in PreFix notation and the character post in PostFix notation. DefSpinCovD supports similar options as the xTensor command DefSpinCovD.";
UndefSpinCovD::usage="UndefSpinCov[scd] undefines the spin-compatible covariant derivative scd.";
SpinCovDQ::usage="SpinCovDQ[cd] returns True if the symbol cd has been declared as a spin covariant derivative using DefSpinCovD, and False otherwise.";
Chi::usage="Chi is a reserved symbol in Spinors denoting the first curvature spinor.";
Phi::usage="Phi is a reserved symbol in Spinors denoting the second curvature spinor.";
Psi::usage="Psi is a reserved symbol in Spinors denoting the Weyl spinor.";
Lambda::usage="Lambda is a reserved symbol in Spinors denoting the Lambda scalar.";
Omega::usage="Omega is a reserved symbol in Spinors denoting the torsion spinor";
$ChiSign::usage="$ChiSign is a global variable which sets the sign convention adopted to define the first curvature spinor. Its default value is +1.";
$PhiSign::usage="$PhiSign is a global variable which sets the sign convention adopted to define the second curvature spinor. Its default value is +1.";
$PsiSign::usage="$PsiSign is a global variable which sets the sign convention adopted to define the Weyl spinor. Its default value is +1.";
$LambdaSign::usage="$LambdaSign is a global variable which sets the sign convention adopted to define the Lambda scalar. Its default value is +1.";
$OmegaSign::usage="$OmegaSign is a global variable which sets the sign convention adopted to define the torsion spinor. Its default value is +1.";
Decomposition::usage="Decomposition[expr, object, covd] decomposes curvature tensors of covd in expr according to predefined rules. Possible objects are Riemann, Ricci, TFRicci, Weyl, RicciScalar, FRiemann or Chi.";
BoxToCovD::usage="BoxToCovD[expr,boxcd] expands all instances of boxcd into symmetrized second covariant derivatives, according to the definition of the box operator.";
BoxToCurvature::usage="BoxToCurvature[expr,boxcd] expands all instances of boxcd into expressions which are linear in the curvature spinors of the spin covariant derivative cd.";
SortSpinCovDs::usage="SortSpinCovDs[expr,spincovd] performs a function similar to SortCovDs for 2-index spin covariant derivatives. The basic identity used to re-order the spin covariant derivatives is their commutator in terms of the box operator";
Begin["`Private`"]
$ContextPath
CheckMetric[metric_,tbundle_]:=
Which[
!MetricQ[metric],Throw@Message[DefSpinStructure::unknown,"metric",metric],xAct`xTensor`Private`FrozenMetricQ[metric],Throw@Message[DefSpinStructure::error,"A frozen metric cannot be used."],
TangentBundleOfManifold@BaseOfVBundle@tbundle=!=tbundle,
Throw@Message[DefSpinStructure::error,"The metric must be defined on a tangent bundle."],
DimOfVBundle[tbundle]=!=4,
Throw@Message[DefSpinStructure::notyet,"non 4d manifolds"],
SignDetOfMetric[metric]=!=-1,
Throw@Message[DefSpinStructure::invalid,metric,"Lorentzian metric"],
SignatureOfMetric[metric]=!={1,3,0},
Throw@Message[DefSpinStructure::invalid,metric,"metric of signature +,-,-,-."]
];
SetAttributes[{isetdelayed,itagset,itagsetdelayed},HoldAll];
isetdelayed=SetDelayed;
itagset=TagSet;
itagsetdelayed=TagSetDelayed;
$SolderingForms={};
Sigma[sigma_Symbol]:=GiveSymbol[Sigma,sigma];
GiveOutputString[Sigma,sigma_Symbol]:=StringJoin["\[CapitalSigma]",PrintAs[sigma]];
SetNumberOfArguments[Sigma,1];
Protect[Sigma];
(* Options for formatting *)
Options[DefSpinStructure]:={
SpinorPrefix->Identity,
SpinorMark->PrintAs,
DefInfo->{"spin structure",""}
};
(* Backwards compatibility *)
DefSpinStructure[metric_,vbundle_,vbinds_,eps_,sigma_,cd_,cdsymbols:{_String,_String},options:OptionsPattern[]]:=DefSpinStructure[metric,vbundle,vbinds,eps,sigma,cd,SymbolOfCovD->cdsymbols,options];
(* Main *)
DefSpinStructure[metric_Symbol,vbundle_Symbol,vbinds_List,eps_Symbol,sigma_Symbol,cd_Symbol,options:OptionsPattern[]]:=Catch@With[{tbundle=VBundleOfMetric[metric]},
CheckMetric[metric,tbundle];
With[
{base=BaseOfVBundle[tbundle],
covd=CovDOfMetric[metric]},
(* 1. Create 2d complex inner vbundle *)
DefVBundle[vbundle,base,2,vbinds,Dagger->Complex,FilterRules[{options},Options[DefVBundle]]];
(* 2. Relations in the spin structure *)
VBundleOfSolderingForm[sigma]^=vbundle;
SolderingFormOfVBundle[vbundle]^=sigma;
TangentBundleOfSolderingForm[sigma]^=tbundle;
SpinMetricOfSolderingForm[sigma]^=eps;
SpinCovDsOfSolderingForm[sigma]^={};(*{cd};*)
SolderingFormOfSpinCovD[cd]^=sigma;
(* 3. Construct indices and feed them with With *)
Module[{Ai,Adi,Bi,Bdi,Ci,Cdi,Di,Ddi,ai,bi,ci,di,ei,fi},
{Ai,Bi,Ci,Di}=GetIndicesOfVBundle[vbundle,4,{}];
{Adi,Bdi,Cdi,Ddi}=DaggerIndex/@{Ai,Bi,Ci,Di};
{ai,bi,ci,di,ei,fi}=GetIndicesOfVBundle[tbundle,6,{}];
With[{A=Ai,Ad=Adi,B=Bi,Bd=Bdi,C=Ci,Cd=Cdi,D=Di,Dd=Ddi,a=ai,b=bi,c=ci,d=di,e=ei,f=fi,vbundledag=Dagger[vbundle],epsdag=MakeDaggerSymbol[eps]},
(* 4. Define the soldering form *)
DefTensor[sigma[a,-C,-Dd],base,Dagger->Hermitian,ProtectNewSymbol->False,Master->vbundle,DefInfo->{"soldering form",""},FilterRules[{options},Options[DefTensor]]];
AppendTo[$SolderingForms,sigma];
(* 5. Define eps and its conjugate *)
DefTensor[eps[-A,-B],base,Antisymmetric[{1,2}],Dagger->Complex,ProtectNewSymbol->False,Master->sigma,DefInfo->{"spin metric",""},FilterRules[{options},Options[DefTensor]]];
(* Metric properties *)
MetricQ[eps]^=True;
MetricQ[epsdag]^=True;
xUpAppendTo[MetricsOfVBundle[vbundle],eps];
xUpAppendTo[MetricsOfVBundle[vbundledag],epsdag];
VBundleOfMetric[eps]^=vbundle;
VBundleOfMetric[epsdag]^=vbundledag;
$Metrics=Join[$Metrics,{eps,epsdag}];
InducedFrom[eps]^=Null;
InducedFrom[epsdag]^=Null;
(* Conversion into delta for mixed abstract indices *)
isetdelayed[eps[A_Symbol,-B_Symbol],delta[A,-B]];
isetdelayed[eps[-A_Symbol,B_Symbol],delta[-A,B]];
isetdelayed[epsdag[A_Symbol,-B_Symbol],delta[A,-B]];
isetdelayed[epsdag[-A_Symbol,B_Symbol],delta[-A,B]];
(* 6. Spinor construction *)
Module[{sigmaprefix,sigmamark},
{sigmaprefix,sigmamark}=OptionValue[{DefSpinStructure,DefCovD},{options},{SpinorPrefix,SpinorMark}];
SpinorPrefix[sigma]^=If[sigmaprefix===Identity,sigma,sigmaprefix];
SpinorMark[sigma]^=If[sigmamark===PrintAs,PrintAs[sigma],sigmamark];
];
(* 7. Products of two sigma *)
With[{vQ=xAct`xTensor`Private`VBundleIndexPMQ[vbundle],vdQ=xAct`xTensor`Private`VBundleIndexPMQ[vbundledag]},
itagset[sigma,sigma[a_,A_,Dd_]sigma[-a_,C_,Cd_],eps[A,C]epsdag[Dd,Cd]];
AutomaticRules[sigma,MakeRule[{sigma[a,-B,-Dd]sigma[b,B,Dd],metric[a,b]},MetricOn->All,ContractMetrics->False,TestIndices->False],Verbose->False]
];
With[{Sigmaname=GiveSymbol[Sigma,sigma],Tetraname=Tetra[metric]},
DefTensor[Sigmaname[a,b,-A,-B],base,StrongGenSet[{1},GenSet[-xAct`xPerm`Cycles[{1,2},{3,4}]]],PrintAs:>GiveOutputString[Sigma,sigma],Dagger->Complex,Master->sigma,FilterRules[{options},Options[DefTensor]]];
Sigmaname[a_,b_,C_,-C_]:=-metric[a,b];
Sigmaname[a_,b_,-C_,C_]:=metric[a,b];
Sigmaname[a_,-a_,C_,D_]:=-2eps[C,D];
Sigmaname[-a_,a_,C_,D_]:=-2eps[C,D];
With[{Sigmanamedag=Dagger[Sigmaname],Tetranamedag=Dagger[Tetraname]},
Sigmanamedag[a_,b_,Cd_,-Cd_]:=-metric[a,b];
Sigmanamedag[a_,b_,-Cd_,Cd_]:=metric[a,b];
Sigmanamedag[a_,-a_,Cd_,Dd_]:=-2epsdag[Cd,Dd];
Sigmanamedag[-a_,a_,Cd_,Dd_]:=-2epsdag[Cd,Dd];
AutomaticRules[Sigmaname,MakeRule[{Sigmaname[a,b,A,B]Sigmaname[c,d,C,-B],-Tetraname[b,d,-e,a]Sigmaname[e,c,A,C]},MetricOn->{a,b,c,d,A,C},ContractMetrics->True],Verbose->False];
AutomaticRules[Sigmanamedag,MakeRule[{Sigmanamedag[a,b,Ad,Dd]Sigmanamedag[c,d,Cd,-Dd],-Tetranamedag[b,d,-e,a]Sigmanamedag[e,c,Ad,Cd]},MetricOn->{a,b,c,d,Ad,Cd},ContractMetrics->True],Verbose->False];
itagsetdelayed[Sigmaname,Tetraname[a_,b_,c_,d_]Sigmaname[e_,f_,C_,D_],Condition[metric[a,b]eps[C,D],PairQ[c,e]&&PairQ[d,f]||PairQ[c,f]&&PairQ[d,e]]];
itagsetdelayed[Sigmaname,Tetraname[c_,d_,a_,b_]Sigmaname[e_,f_,C_,D_],Condition[metric[a,b]eps[C,D],PairQ[c,e]&&PairQ[d,f]||PairQ[c,f]&&PairQ[d,e]]];
itagsetdelayed[Sigmanamedag,Tetranamedag[a_,b_,c_,d_]Sigmanamedag[e_,f_,Cd_,Dd_],Condition[metric[a,b]epsdag[Cd,Dd],PairQ[c,e]&&PairQ[d,f]||PairQ[c,f]&&PairQ[d,e]]];
itagsetdelayed[Sigmanamedag,Tetranamedag[c_,d_,a_,b_]Sigmanamedag[e_,f_,Cd_,Dd_],Condition[metric[a,b]epsdag[Cd,Dd],PairQ[c,e]&&PairQ[d,f]||PairQ[c,f]&&PairQ[d,e]]];
];
];
(* 8. Define the spinor equivalent of the metric tensor and the volume element *)
With[{MetricName=AddSpinorPrefix[metric,SpinorPrefix[sigma]],EpsilonSpin=AddSpinorPrefix[epsilon@metric,SpinorPrefix[sigma]]},
DefSpinorOfTensor[MetricName[A,Cd,B,Dd],metric[-a,-b],sigma,FilterRules[{options},Options[DefTensor]]];
itagset[MetricName,MetricName[A_,Cd_,B_,Dd_],eps[A,B]epsdag[Cd,Dd]];
DefSpinorOfTensor[EpsilonSpin[A,Ad,B,Bd,C,Cd,D,Dd],epsilon[metric][-a,-b,-c,-d],sigma,options];
itagsetdelayed[EpsilonSpin,EpsilonSpin[A_,Ad_,B_,Bd_,C_,Cd_,D_,Dd_],epsilonOrientation[metric,AIndex] I (-eps[A,D]eps[B,C]epsdag[Ad,Cd]epsdag[Bd,Dd]+eps[A,C]eps[B,D]epsdag[Ad,Dd]epsdag[Bd,Cd])];
];
(* 9. Define the covariant derivative (and the curvature spinors) *)
DefSpinCovD[cd[-a],sigma,Torsion->TorsionQ@covd,ExtendedFrom->covd,Master->sigma,ProtectNewSymbol->False,FilterRules[{options},Options[DefSpinCovD]]];
(* Compatibility with metric, for all index configurations *)
isetdelayed[cd[a__][eps[A_,B_]],0];
isetdelayed[cd[a__][epsdag[A_,B_]],0];
CovDOfMetric[eps]^=cd;
CovDOfMetric[epsdag]^=cd;
]
]
]
];
SetNumberOfArguments[DefSpinStructure,{7,Infinity}];
Protect[DefSpinStructure];
UndefSpinStructure[vbundle_?VBundleQ]:=UndefSpinStructure[SolderingFormOfVBundle[vbundle]];
UndefSpinStructure[covd_?CovDQ]:=UndefSpinStructure[SolderingFormOfSpinCovD[covd]];
UndefSpinStructure[sigma_?xTensorQ]:=With[{newlist=DeleteCases[$SolderingForms,sigma]},
UndefVBundle[VBundleOfSolderingForm[sigma]];
$SolderingForms=newlist;]/;MemberQ[$SolderingForms,sigma];
UndefSpinStructure[x_]:=Throw@Message[UndefSpinStructure::unknown,"spin structure", x];
SetNumberOfArguments[UndefSpinStructure,1];
Protect[UndefSpinStructure];
AddBar[T_?xTensorQ]:=StringJoin["\!\(","\*OverscriptBox[\(",PrintAs@Evaluate@Dagger[T],"\),\(_\)]","\)"];
AddTilde[T_?xTensorQ]:=StringJoin["\!\(","\*OverscriptBox[\(",PrintAs@Evaluate@Dagger@T,"\),\(~\)]","\)"];
AddDagger[T_?xTensorQ]:=StringJoin[PrintAs@Evaluate@Dagger@T,$DaggerCharacter];
Options[DefSpinor]={PrintDaggerAs->Identity};
DefSpinor[spinor_[inds___],deps_,options:OptionsPattern[{DefSpinor,DefTensor}]]:=(DefTensor[spinor[inds],deps,FilterRules[{options},Options[DefTensor]],Dagger->Complex,DefInfo->{"spinor",""}];
If[Dagger@spinor=!=spinor,
xAct`xTensor`Private`SetPrintAs[Dagger@spinor,xAct`xTensor`Private`PrintAsString[Dagger@spinor,OptionValue[PrintDaggerAs]]]
];);
DefSpinor[spinor_[inds___],deps_,sym_,options:OptionsPattern[{DefSpinor,DefTensor}]]:=(DefTensor[spinor[inds],deps,sym,FilterRules[{options},Options[DefTensor]],Dagger->Complex,DefInfo->{"spinor",""}];
If[Dagger@spinor=!=spinor,
xAct`xTensor`Private`SetPrintAs[Dagger@spinor,xAct`xTensor`Private`PrintAsString[Dagger@spinor,OptionValue[PrintDaggerAs]]]
];);
UndefSpinor=UndefTensor;
SetNumberOfArguments[DefSpinor,{2,Infinity}];
Protect[DefSpinor,UndefSpinor];
AddSpinorPrefix[object_Symbol,prefix_Symbol]:=ASP[UnlinkSymbol[object],prefix];
ASP[{prefix_,other__},prefix_]:=LinkSymbols[{other}];
ASP[{other__},prefix_]:=LinkSymbols[{prefix,other}];
SpinorOfTensor::name="Spinor of `1` not defined. Prepending `2`.";
TensorOfSpinor::name="Tensor of `1` not defined. Prepending `2`.";
SpinorOfTensor[tensor_,sigma_]:=With[{prefix=SpinorPrefix[sigma]},Message[SpinorOfTensor::name,tensor,prefix];AddSpinorPrefix[tensor,prefix]];
TensorOfSpinor[spinor_,sigma_]:=With[{prefix=SpinorPrefix[sigma]},Message[TensorOfSpinor::name,spinor,prefix];AddSpinorPrefix[spinor,prefix]];
(* Default choice of spinor prefix *)
SpinorPrefix[sigma_]:=sigma;
SetNumberOfArguments[SpinorPrefix,1];
SetNumberOfArguments[SpinorOfTensor,2];
SetNumberOfArguments[TensorOfSpinor,2];
Protect[SpinorPrefix,SpinorOfTensor,TensorOfSpinor];
AddSpinorMark[character_String,mark_String]:=StringJoin[mark,character];
AddSpinorMark[character_String,function_]:=function[character];
(* Same index: shift slots *)
indRules[f_,{vbundle_,nv_,IndexList[A_,spinds___]},{tbundle_,nt_,IndexList[A_,inds___]},rules_List]:=indRules[f,{vbundle,nv+1,IndexList[spinds]},{tbundle,nt+1,IndexList[inds]},Append[rules,nt->nv]];
(* tbundle index corresponds to a pair of vbundle/vbundledag indices *)
indRules[f_,{vbundle_,nv_,IndexList[A_,Bd_,spinds___]},{tbundle_,nt_,IndexList[a_,inds___]},rules_List]:=
indRules[f,{vbundle,nv+2,IndexList[spinds]},{tbundle,nt+1,IndexList[inds]},Append[rules,nt->{nv,nv+1}]]/;AIndexQ[A,vbundle]&&AIndexQ[Bd,Dagger[vbundle]]&&AIndexQ[a,tbundle];
(* Exit point *)
indRules[f_,{_,_,IndexList[]},{_,_,IndexList[]},rules_List]:=rules;
(* Other case: error *)
General::incomp="Indices `1` and `2` are incompatible.";
indRules[DefSpinorOfTensor,{_,_,spinds_},{_,_,inds_},_]:=Throw@Message[DefSpinorOfTensor::incomp,spinds,inds];
indRules[DefTensorOfSpinor,{_,_,spinds_},{_,_,inds_},_]:=Throw@Message[DefTensorOfSpinor::incomp,inds,spinds];
(* This assumes a GenSet in cyclic form *)
SpinorSymmetry[tensor_[inds___],rules_List]:=SymmetryGroupOfTensor[tensor[inds]]/.StrongGenSet[base_,genset_]:>StrongGenSet[first/@(base/.rules),genset/.perm_Cycles:>spinorCycles[rules]/@perm];
first[i_Integer]:=i;
first[list_List]:=First[list];
spinorCycles[rules_List][cycle_List]:=spinorCyclesTranspose[cycle/.rules];
spinorCyclesTranspose[cycle:{__Integer}]:=cycle;
spinorCyclesTranspose[cycle:{{_,_}..}]:=Sequence@@Transpose[cycle];
spinorCyclesTranspose[cycle_]:=Throw@Message[DefSpinorOfTensor::error,"Symmetry of tensor incompatible with indices."];
(* This assumes a GenSet in cyclic form *)
SymmetryOfTensor[spinor_[spinds___],rules_List]:=With[{firstrules=Map[first,rules,{2}]},
SymmetryGroupOfTensor[spinor[spinds]]/.StrongGenSet[base_,genset_]:>StrongGenSet[Cases[base,Alternatives@@(First/@firstrules)]/.firstrules,genset/.perm_Cycles:>tensorCycles[firstrules]/@perm]
];
tensorCycles[firstrules_List][cycle_List]:=Which[
Complement[cycle,First/@firstrules]==={},cycle/.firstrules,
Intersection[cycle,First/@firstrules]==={},{},
True,Throw@Message[DefTensorOfSpinor::error,"Symmetry of spinor cannot be reduced to tensor."]];
DefSpinorOfTensor[spinor_Symbol[spinds___],tensor_Symbol[inds___],sigma_Symbol,options:OptionsPattern[]]:=Catch@Module[{vbundle,tbundle,rules,sym},
(* Check tensor *)
If[!xTensorQ[tensor],Throw@Message[DefSpinorOfTensor::unknown,"tensor",tensor]];
(* VBundles *)
vbundle=VBundleOfSolderingForm[sigma];
tbundle=TangentBundleOfSolderingForm[sigma];
(* Check index compatibility and construct rules *)
rules=indRules[DefSpinorOfTensor,{vbundle,1,IndexList[spinds]},{tbundle,1,IndexList[inds]},{}];
sym=SpinorSymmetry[tensor[inds],rules];
(* Define spinor. Do not give master *)
DefTensor[spinor[spinds],DependenciesOfTensor[tensor],sym,Dagger:>If[DaggerQ[tensor],Complex,Hermitian],Master->Null,FilterRules[{options},Options[DefTensor]],
PrintAs:>AddSpinorMark[PrintAs[tensor],SpinorMark[sigma]],DefInfo->{"spinor","Equivalent of tensor "<>ToString[tensor],"Equivalent of tensor "<>ToString[Dagger[tensor]]}];
(* Register *)
RegisterSpinorOfTensor[spinor,tensor,sigma];
SetVisitorHost[spinor,tensor,sigma];
If[DaggerQ@tensor,
RegisterSpinorOfTensor[Dagger[spinor],Dagger[tensor],sigma];
(* SetVisitorHost[Dagger[spinor],Dagger[tensor],sigma]*)];
];
SetNumberOfArguments[DefSpinorOfTensor,{3,Infinity}];
Protect[DefSpinorOfTensor];
RegisterSpinorOfTensor[spinor_,tensor_,sigma_]:=(
xTagSet[{tensor,SpinorOfTensor[tensor,sigma]},spinor];
xTagSet[{spinor,TensorOfSpinor[spinor,sigma]},tensor];
);
SetVisitorHost[visitor_,host_,sigma_]:=(
xUpAppendTo[HostsOf[visitor],sigma];
xUpAppendTo[HostsOf[visitor],host];
xUpAppendTo[VisitorsOf[sigma],visitor];
xUpAppendTo[VisitorsOf[host],visitor];
);
DefTensorOfSpinor[tensor_Symbol[inds___],spinor_Symbol[spinds___],sigma_Symbol,options:OptionsPattern[]]:=Catch@Module[{vbundle,tbundle,rules,sym},
(* Check spinor *)
If[!xTensorQ[spinor],Throw@Message[DefTensorOfSpinor::unknown,"spinor",spinor]];
(* VBundles *)
vbundle=VBundleOfSolderingForm[sigma];
tbundle=TangentBundleOfSolderingForm[sigma];
(* Check index compatibility and construct rules *)
rules=Reverse/@indRules[DefTensorOfSpinor,{vbundle,1,IndexList[spinds]},{tbundle,1,IndexList[inds]},{}];
sym=SymmetryOfTensor[spinor[spinds],rules];
(* Define tensor. Do not give master *)
DefTensor[tensor[inds],DependenciesOfTensor[spinor],sym,Dagger:>If[HermitianQ[spinor],Real,Complex],Master->Null,FilterRules[{options},Options[DefTensor]],
PrintAs:>AddSpinorMark[PrintAs[spinor],SpinorMark[sigma]],DefInfo->{"tensor","Equivalent of spinor "<>ToString[spinor],"Equivalent of spinor "<>ToString[Dagger[spinor]]}];
(* Register *)
RegisterSpinorOfTensor[spinor,tensor,sigma];
SetVisitorHost[tensor,spinor,sigma];
If[DaggerQ[tensor],
RegisterSpinorOfTensor[Dagger[spinor],Dagger[tensor],sigma];
(* SetVisitorHost[Dagger[spinor],Dagger[tensor],sigma]*);
];
];
SetNumberOfArguments[DefTensorOfSpinor,{3,Infinity}];
Protect[DefTensorOfSpinor];
(* Return an IndexList of Pair pairs *)
FindPairs[expr_,vbs_List]:=IndexList@@Apply[Join,
xAct`xTensor`Private`TransposeDaggerPairs[#,vbs,False]&/@Join[
FindAllOfType[expr,Tensor],Cases[FindAllOfType[expr,CovD],_Symbol?SpinCovDQ[a_,b_][_]->IndexList[a,b]]
]
];
(* Separate pairs in the given indices list *)
FindPairs[expr_,vbs_List,indices_IndexList]:=With[{pairs=FindPairs[expr,vbs]},
Flatten[{List@@Complement[indices,Flatten[Apply[IndexList,pairs,1],1]],Cases[pairs,pair_/;Intersection[IndexList@@pair,indices]=!=IndexList[]]},1]
];
(* Shortcuts for the third argument *)
PutSolderingForm[expr_]:=PutSolderingForm[expr,IndicesOf[]];
PutSolderingForm[expr_,inds_]:=PutSolderingForm[expr,inds,$SolderingForms];
PutSolderingForm[expr_,inds_,list_List]:=Fold[PutSolderingForm[#1,inds,#2]&,expr,list];
(* Second argument *)
PutSolderingForm[expr_,ind_?GIndexQ,sigma_Symbol]:=PutSolderingForm[expr,IndexList[ind],sigma];
PutSolderingForm[expr_,list_List,sigma_Symbol]:=Fold[PutSolderingForm[#1,#2,sigma]&,expr,list];
PutSolderingForm[expr_,master:(_Symbol?VBundleQ|_Symbol?xTensorQ|_Symbol?CovDQ),sigma_Symbol]:=PutSolderingForm[expr,IndicesOf[Free,master],sigma];
PutSolderingForm[expr_,f_IndicesOf,sigma_Symbol]:=PutSolderingForm[expr,DeleteDuplicates[Prepend[f,Free]][expr],sigma];
(* Actual working function. Two entry points *)
PutSolderingForm[expr_,pair_Pair,sigma_Symbol]:=PutSolderingForm1[VBundleOfSolderingForm[sigma],sigma][expr,pair];
PutSolderingForm[expr_,inds_IndexList,sigma_Symbol]:=With[{vbundle=VBundleOfSolderingForm[sigma]},Fold[PutSolderingForm1[vbundle,sigma],expr,FindPairs[expr,{vbundle,Dagger[vbundle]},inds]]
];
(* Other *)
SetNumberOfArguments[PutSolderingForm,{1,3}];
Protect[PutSolderingForm];
PutSolderingForm1[vbundle_,sigma_][expr_,Pair[index1_,index2_]]:=
With[{indices=FindIndices[expr]},
(* Some Checks *)
If[Or[
VBundleOfIndex[index1]=!=vbundle,
VBundleOfIndex[index2]=!=Dagger[vbundle],
FreeQ[indices,index1],
FreeQ[indices,index2]
],
(* Problem: do nothing *)
expr,
(* Do Put *)
Module[{A1=DummyAs[index1],A2=DummyAs[index2],a=If[UpIndexQ[index1],UpIndex,DownIndex]@First@GetIndicesOfVBundle[TangentBundleOfManifold@BaseOfVBundle[vbundle],1,UpIndex/@FindIndices@expr]},
ReplaceIndex[expr,{index1->A1,index2->A2}]sigma[a,-A1,-A2]
]
]
];
PutSolderingForm1[vbundle_,sigma_][0,AnyIndices]:=0;
PutSolderingForm1[vbundle_,sigma_][expr_,index_]:=
With[{indices=FindIndices[expr]},
(* Some Checks *)
If[Or[
VBundleOfIndex[index]=!=TangentBundleOfManifold@BaseOfVBundle[vbundle],
FreeQ[indices,index]
],
(* Problem: do nothing *)
expr,
(* Do Put *)
Module[{a,A,inds=UpIndex/@indices},
a=DummyAs[index];
inds=Union[inds,DaggerIndex/@inds];
A=If[UpIndexQ[index],UpIndex,DownIndex]@First@GetIndicesOfVBundle[vbundle,1,inds];
ReplaceIndex[expr,index->a]sigma[-a,A,DaggerIndex[A]]
]
]
];
(* Single option *)
Options[ContractSolderingForm]:={OverDerivatives->True};
(* Shortcuts *)
ContractSolderingForm[expr_,options:OptionsPattern[]]:=ContractSolderingForm[expr,IndicesOf[],options];
ContractSolderingForm[expr_,tensor_Symbol?xTensorQ,options:OptionsPattern[]]:=ContractSolderingForm[expr,IndicesOf[tensor],options];
ContractSolderingForm[expr_,vbundle_Symbol?VBundleQ,options:OptionsPattern[]]:=ContractSolderingForm[expr,IndicesOf[vbundle],options];
ContractSolderingForm[expr_,index_?GIndexQ,options:OptionsPattern[]]:=ContractSolderingForm[expr,IndexList[index],options];
ContractSolderingForm[expr_,f_IndicesOf,options:OptionsPattern[]]:=ContractSolderingForm[expr,f[expr],options];
(* Main definition *)
ContractSolderingForm[expr_,list_IndexList,options:OptionsPattern[]]:=Fold[CSF1[OptionValue[OverDerivatives],list],Expand[expr],$SolderingForms];
(* Other *)
SetNumberOfArguments[ContractSolderingForm,{1,Infinity}];
Protect[ContractSolderingForm];
(* Plus: thread *)
CSF1[TF_,inds_IndexList][expr_Plus,sigma_]:=CSF1[TF,inds][#,sigma]&/@expr;
CSF1[TF_,inds_IndexList][0,sigma_]:=0;
CSF1[TF_,inds_IndexList][expr_,sigma_]:=RemoveTMP@Fold[CSF2[TF,sigma],expr,inds];
RemoveTMP[expr_]:=expr/.new:(SpinorTMP|TensorTMP)[__][___]:>ArrangeSpinTMP[new];
CSF2[TF_,sigma_][expr_,i_]:=CSF2[TF,sigma][expr,i,ChangeIndex[i],DaggerIndex[i]===i];
(* Contraction with tensors and derivatives *)
CSF2[False,sigma_][expr_,i_?ABIndexQ,ic_,True]:=Expand[expr/.{
sigma[i,a_,b_]tensor_?xTensorQ[i1___,ic,i2___]:>If[HasDaggerCharacterQ[tensor],
SpinorTMP[tensor,sigma][i1,b,a,i2],SpinorTMP[tensor,sigma][i1,a,b,i2]],sigma[ic,a_,b_]tensor_?xTensorQ[i1___,i,i2___]:>If[HasDaggerCharacterQ[tensor],SpinorTMP[tensor,sigma][i1,b,a,i2],SpinorTMP[tensor,sigma][i1,a,b,i2]],
sigma[i,a_,b_]covd_Symbol?SpinCovDQ[ic][expr1_]:>covd[a,b][expr1],
sigma[ic,a_,b_]covd_Symbol?SpinCovDQ[i][expr1_]:>covd[a,b][expr1]}
];
(* Recursion through covariant derivatives *)
CSF2[True,sigma_][expr_,i_?AIndexQ,ic_,True]:=Expand[CSF2[False,sigma][expr,i,ic,True]/.rest_. sigma[i,a_,b_]covd_Symbol?CovDQ[inds__][expr1_]:>rest covd[inds][CSF2[True,sigma][sigma[i,a,b]expr1,i,ic,True]]/;IsIndexOf[expr1,ic]&&SolderingFormOfSpinCovD[covd]===sigma];
(* For other types of indices, do nothing *)
CSF2[_,_][expr_,_,_,True]:=expr;
SST[sigma_,a_][spinor_,{i1___},{ic_,jc_},{i2___}]:=TensorTMP[spinor,sigma,a:>Sequence[ic,jc]][i1,a,i2];
(* Contraction with tensors and 2-index derivatives *)
CSF2[False,sigma_][expr_,i_?EIndexQ,ic_,False]:=Expand[expr/.{
sigma[a_,j_,i]sigma[b_,k_,ic?UpIndexQ]:>Sigma[sigma][a,b,j,k],
sigma[a_,i,j_]sigma[b_,ic?UpIndexQ,k_]:>Dagger[Sigma[sigma]][a,b,j,k],
(sigma[a_,j_,i]|sigma[a_,i,j_])spinor_?xTensorQ[i1___,ic,jc_,i2___]:>SST[sigma,a][spinor,{i1},{ic,jc},{i2}]/;PairQ[j,jc],
(sigma[a_,jc_,ic]|sigma[a_,ic,jc_])spinor_?xTensorQ[i1___,i,j_,i2___]:>SST[sigma,a][spinor,{i1},{i,j},{i2}]/;PairQ[j,jc],
(sigma[a_,i,j_]|sigma[a_,j_,i])spinor_?xTensorQ[i1___,jc_,ic,i2___]:>SST[sigma,a][spinor,{i1},{jc,ic},{i2}]/;PairQ[j,jc],
(sigma[a_,jc_,ic]|sigma[a_,ic,jc_])spinor_?xTensorQ[i1___,j_,i,i2___]:>SST[sigma,a][spinor,{i1},{j,i},{i2}]/;PairQ[j,jc],
sigma[a_,i,j_]covd_?SpinCovDQ[ic,jc_][expr1_]:>CovDSpinSign[ic,jc]covd[a][expr1]/;PairQ[j,jc],
sigma[a_,ic,jc_]covd_?SpinCovDQ[i,j_][expr1_]:>CovDSpinSign[i,j]covd[a][expr1]/;PairQ[j,jc],
sigma[a_,j_,i]covd_?SpinCovDQ[jc_,ic][expr1_]:>CovDSpinSign[jc,ic]covd[a][expr1]/;PairQ[j,jc],
sigma[a_,jc_,ic]covd_?SpinCovDQ[j_,i][expr1_]:>CovDSpinSign[j,i]covd[a][expr1]/;PairQ[j,jc]}
];
(* Recursion through covariant derivatives *)
CSF2[True,sigma_][expr_,i_?AIndexQ,ic_,False]:=Expand[CSF2[False,sigma][expr,i,ic,False]/.rest_.(sig:(sigma[a_,i,j_]|sigma[a_,j_,i]))covd_Symbol?CovDQ[inds__][expr1_]:>rest covd[inds][CSF2[True,sigma][sig expr1,i,ic,False]]/;IsIndexOf[expr1,ic]&&IsIndexOf[expr1,ChangeIndex[j]]&&SolderingFormOfSpinCovD[covd]===sigma];
(* For other types of indices, do nothing *)
CSF2[_,_][expr_,_,_,False]:=expr;
(* Generalize some Q-functions *)
SpinorTMP/:HasDaggerCharacterQ[SpinorTMP[tensor_,sigma_,___]]:=HasDaggerCharacterQ[tensor];
SpinorTMP/:xTensorQ[SpinorTMP[tensor_,sigma_,___]]:=xTensorQ[tensor];
TensorTMP/:xTensorQ[TensorTMP[spinor_,sigma_,___]]:=xTensorQ[spinor];
(* IsIndexOf *)
SpinorTMP/:IsIndexOf[SpinorTMP[__][inds__],ind_,_]:=MemberQ[{inds},ind];
TensorTMP/:IsIndexOf[TensorTMP[__][inds__],ind_,_]:=MemberQ[{inds},ind];
(* Recursion *)
SpinorTMP[SpinorTMP[tensor_,sigma_,rules1___],sigma_,rules2___]:=SpinorTMP[tensor,sigma,rules1,rules2];
TensorTMP[TensorTMP[spinor_,sigma_,rules1___],sigma_,rules2___]:=TensorTMP[spinor,sigma,rules1,rules2];
SpinorTMP[SpinorTMP[__],__]:=Throw@Message[ContractSolderingForm::error,"Cannot contract two different soldering forms on the same tensor."];
TensorTMP[TensorTMP[__],__]:=Throw@Message[ContractSolderingForm::error,"Cannot contract two different soldering forms on the same spinor."];
ArrangeSpinTMP[SpinorTMP[tensor_,sigma_,rules___][spinds___]]:=With[{spinor=SpinorOfTensor[tensor,sigma]},
If[!xTensorQ[spinor],DefSpinorOfTensor[spinor[spinds],Apply[tensor,DummyIn/@SlotsOfTensor[tensor]],sigma]];
SpinorSign[spinor,rules][spinds]spinor[spinds]];
ArrangeSpinTMP[TensorTMP[spinor_,sigma_,rules___][tinds___]]:=With[{tensor=TensorOfSpinor[spinor,sigma]},
If[!xTensorQ[tensor],DefTensorOfSpinor[tensor[tinds],Apply[spinor,DummyIn/@SlotsOfTensor[spinor]],sigma]];
TensorSign[spinor,rules][tinds]tensor[tinds]];
(* Derivatives: correct character is covariant *)
CovDSpinSign[i_,j_]:=If[UpIndexQ[i],-1,1]If[UpIndexQ[j],-1,1];
(* Transforming spinor into tensor *)
TensorSign[spinor_][___]:=1;
TensorSign[spinor_,rules__][tinds___]:=Apply[SpinorSign[spinor,rules],IndexList[tinds]/.{rules}];
(* Transforming tensor into spinor *)
SpinorSign[spinor_][___]:=1;
SpinorSign[spinor_,rules__][spinds___]:=With[{repinds=Last/@{rules}},
Inner[checkVB,xAct`xTensor`Private`SignedVBundleOfIndex/@repinds,SlotsOfTensor[spinor][[Flatten[Position[{spinds},#]&/@repinds]]],Times]];
(* Check vbundles are correct *)
checkVB[vb_,-vb_]:=-1;
checkVB[-vb_,vb_]:=-1;
checkVB[vb_,vb_]:=1;
checkVB[_,_]:=Throw@Message[ContractSolderingForm::error,"Internal inconsistency. Tell JMM."];
(* To four arguments *)
SeparateSolderingForm[args___][expr_]:=SeparateSolderingForm[args][expr,All];
SeparateSolderingForm[][expr_,inds_]:=SeparateSolderingForm[$SolderingForms,AIndex][expr,inds];
SeparateSolderingForm[sigma_][expr_,inds_]:=SeparateSolderingForm[sigma,AIndex][expr,inds];
(* Four arguments *)
SeparateSolderingForm[list_List,basis_][expr_,inds_]:=Fold[SeparateSolderingForm[#2,basis][#1,inds]&,expr,list];
SeparateSolderingForm[sigma_Symbol,basis_][expr_,All]:=SeparateSolderingForm[sigma,basis][expr,IndicesOf[]];
SeparateSolderingForm[sigma_Symbol,basis_][expr_,vb_Symbol?VBundleQ]:=SeparateSolderingForm[sigma,basis][expr,IndicesOf[vb]];
SeparateSolderingForm[sigma_Symbol,basis_][expr_,covd_Symbol?CovDQ]:=SeparateSolderingForm[sigma,basis][expr,IndicesOf[covd]];
SeparateSolderingForm[sigma_Symbol,basis_][expr_,ind_?GIndexQ]:=SeparateSolderingForm[sigma,basis][expr,IndexList[ind]];
(* Thread over sums, before using IndicesOf *)
SeparateSolderingForm[sigma_Symbol,basis_][expr_Plus,inds_]:=SeparateSolderingForm[sigma,basis][#,inds]&/@expr;
SeparateSolderingForm[sigma_Symbol,basis_][expr_,f_IndicesOf]:=SeparateSolderingForm[sigma,basis][expr,f[expr]];
(* Expand list of indices *)
SeparateSolderingForm[sigma_Symbol,basis_][expr_,list_IndexList]:=RemoveTMP@Fold[SSF1[sigma,basis],expr,FindPairs[expr,{VBundleOfSolderingForm[sigma]},list]];
(* Errors *)
SeparateSolderingForm[x__][_,_IndexList]:=Throw@Message[SeparateSolderingForm::invalid,{x},"sigma or basis info"];
SeparateSolderingForm[_,_][_,x__]:=Message[SeparateSolderingForm::"argrx",SeparateSolderingForm,2+Length[{x}],2];
Protect[SeparateSolderingForm];
SSF1[sigma_,basis_][expr_,pair_Pair]:=SSFInner[sigma,basis][expr,pair];
SSF1[sigma_,basis_][0,AnyIndices]:=0;
SSF1[sigma_,basis_][expr_,index_]:=SSFTangent[sigma,basis][expr,index]/;DaggerIndex[index]===index;
SSF1[__][expr_,_]:=expr;
SSFTangent[sigma_,basis_][expr_,index_]:=With[{ivb=VBundleOfIndex[index],svb=VBundleOfSolderingForm[sigma]},
If[ivb=!=TangentBundleOfManifold@BaseOfVBundle@svb,Throw@Message[SeparateSolderingForm::invalid,sigma,"soldering form for index "<>ToString[index]]];
expr/.{
tensor_?xTensorQ[a___,index,b___]:>Module[{A=If[UpIndexQ[index],1,-1]DummyIn[svb,basis],Ad},
Ad=DaggerIndex[A];
If[HasDaggerCharacterQ[tensor],
SpinorTMP[tensor,sigma,index:>Sequence[Ad,A]][a,Ad,A,b],
SpinorTMP[tensor,sigma,index:>Sequence[A,Ad]][a,A,Ad,b]
]sigma[index,-A,-Ad]
]/;tensor=!=sigma,
covd_Symbol?CovDQ[a___,index,b___][expr1_]:>Module[{A=If[UpIndexQ[index],1,-1]DummyIn[svb,basis],Ad},
Ad=DaggerIndex[A];
CovDSpinSign[A,Ad]covd[a,A,Ad,b][expr1]sigma[index,-A,-Ad]]
}
];
SSFInner[sigma_,basis_][expr_,Pair[i1_,i2_]]:=With[{tbundle=TangentBundleOfManifold@BaseOfVBundle@VBundleOfIndex[i1],ii1=If[HasDaggerCharacterQ[i2],i1,i2],ii2=If[HasDaggerCharacterQ[i2],i2,i1]},
expr/.{
spinor_?xTensorQ[a___,ii1,ii2,b___]:>Module[{dummy=If[UpIndexQ[ii1],1,-1]DummyIn[tbundle,basis]},TensorTMP[spinor,sigma][a,dummy,b]sigma[-dummy,ii1,ii2]]/;spinor=!=sigma,
spinor_?xTensorQ[a___,ii2,ii1,b___]:>Module[{dummy=If[UpIndexQ[ii1],1,-1]DummyIn[tbundle,basis]},TensorTMP[spinor,sigma][a,dummy,b]sigma[-dummy,ii1,ii2]]/;spinor=!=sigma,
covd_Symbol?CovDQ[ii1,ii2][expr1_]:>Module[{dummy=If[UpIndexQ[ii1],1,-1]DummyIn[tbundle,basis]},covd[dummy][expr1]sigma[-dummy,ii1,ii2]]
}];
(* We should check that these are indeed spin-indices *)
IrreducibleDecomposition[tensor_Symbol?xTensorQ[inds__]]:=IrreducibleDecomposition[tensor[inds],First@Union@Sort[VBundleOfIndex/@IndexList@inds]];
(* Scalar case *)
IrreducibleDecomposition[tensor_Symbol?xTensorQ[],_]:=tensor[];
(* Vector case *)
IrreducibleDecomposition[tensor_Symbol?xTensor[a_],_]:=tensor[a];
(* General case: create TF tensor and separate VB and VBdagger *)
IrreducibleDecomposition[tensor_Symbol?xTensorQ[inds__],spinVB_]:=With[{pos1=SlotsOfVBundle[tensor[inds],spinVB],pos2=SlotsOfVBundle[tensor[inds],Dagger@spinVB],epsilon=First@MetricsOfVBundle@spinVB,tft=SymbolJoin["TF",tensor]},
If[!xTensorQ[tft],
DefTensor[tft[LI["TF"],AnyIndices@spinVB,AnyIndices@Dagger@spinVB],BaseOfVBundle[spinVB],Dagger->Complex,Master->tensor,ProtectNewSymbol->False]
];
SymmetryGroupOfTensor[tft[inds1__]]^:=JoinSGS[Symmetric[SlotsOfVBundle[tft[inds1 ],spinVB]],Symmetric[SlotsOfVBundle[tft[inds1],Dagger@spinVB]]];
tft[___,a_,___,-a_,___]:=0;
tft[___,-a_,___,a_,___]:=0;Apply[Plus,DecoBuild[tft,{inds},epsilon,Dagger@epsilon]/@DecoOuter[pos1,pos2,Length[{inds}]]]
];
SlotsOfVBundle[list_,vbundle_]:=Flatten@Position[list,_?(AIndexQ[#,vbundle]&),{1}];
(* Given a list of slots, return all possible pairs, sorted *)
DecoPairs[list_]:=Union@Map[Sort,Partition[#,2]&/@Permutations[list],2];
(* Given a list of slots, return all possibe groups of 2n slots *)
DecoGroups[list_]:=Flatten[Table[DecoPairs/@Subsets[list,{n}],{n,0,Length@list,2}],2];
(* Given spin slots and spindag slots, return all combinations and the complementary slots *)
DecoOuter[list1_,list2_,length_]:=Flatten[Outer[DecoArrange[length],DecoGroups[list1],DecoGroups[list2],1],1];
DecoArrange[n_][list1_,list2_]:={list1,list2,Complement[Range[n],Flatten@list1,Flatten@list2]};
(* Construct actual TFT tensor and product of epsilons *)
DecoBuild[tft_,inds_,eps_,epsdag_][{list1_,list2_,list_}]:=
tft[LI@Join[list1,list2],Sequence@@(inds[[list]])]Times@@Apply[eps,Part[inds,#]&/@list1,1]Times@@Apply[epsdag,Part[inds,#]&/@list2,1];
Options[DefSpinCovD]:={
Torsion->False,
FromMetric->Null,
ExtendedFrom->Null,
Master->Null,
ProtectNewSymbol->$ProtectNewSymbols,
DefInfo->{"spin covariant derivative",""}
};
$SpinCovDs:=Apply[Join,SpinCovDsOfSolderingForm/@$SolderingForms];
DefSpinCovD[covd_[-a_],sigma_,symbols_,options:OptionsPattern[]]:=Catch@Module[{metric,ef,newsymbols,a1,A1,A1d,B1,B1d},
{a1}=GetIndicesOfVBundle[VBundleOfIndex[a],1];
{A1,B1}=GetIndicesOfVBundle[VBundleOfSolderingForm[sigma],2];
{A1d,B1d}=DaggerIndex/@{A1,B1};
{metric,ef}=OptionValue[{FromMetric,ExtendedFrom}];
(* If extended, the properties of covd are those of ef (forget options) *)
If[ef=!=Null,metric=MetricOfCovD[ef]];
(* Check metric argument *)
If[metric=!=Null,
If[BaseOfVBundle@VBundleOfMetric[metric]=!=BaseOfVBundle@VBundleOfSolderingForm[sigma],Throw@Message[DefSpinCovD::error,"Incompatible vbundles of metric and soldering form."]];
(* Association to a frozen metric is removed
If[xAct`xTensor`Private`FrozenMetricQ[metric],Message[DefSpinCovD::error,"A frozen metric cannot be used."];metric=Null]*)
];
(* Define derivative. How do we pass the options? *)
DefCovD[covd[-a],VBundleOfSolderingForm[sigma],symbols,FilterRules[{options},Options[DefCovD]]];
SpinCovDQ[covd]^=True;
(* Relations between the covariant derivative and the soldering form *)
SolderingFormOfSpinCovD[covd]^=sigma;
xUpAppendTo[SpinCovDsOfSolderingForm[sigma],covd];
(* If ef===Null then use the trick of extending from covd *)
If[ef===Null,ef=covd];
(* Construct associated curvature spinors *)
ConstructRTSpinors[covd,ef,sigma,metric,options];
(* Define associated box operators *)
DefBox[covd];
(* Compatibility with the spin structure *)
If[metric===Null,
covd[__][sigma[b_Symbol,-F_,-G_]]:=0;
covd[__][sigma[-b_,F_Symbol,G_Symbol]]:=0,
covd[__][sigma[b_,F_,G_]]:=0
];
(* Definitions as 2-index derivative *)
xAct`xTensor`Private`MakeLinearDerivative[{covd[F_,G_],covd[F,G]},True];
(* Relations between 2-index derivative and spacetime derivative *)
SpinorToTensor[covd,sigma]:=MakeRule[{covd[A1,A1d]@expr_,sigma[a1,A1,A1d]covd[-a1]@expr},UseSymmetries->False,Evaluate->True];
TensorToSpinor[covd,sigma]:=MakeRule[{covd[a1]@expr_,sigma[a1,A1,A1d]covd[-A1,-A1d]@expr},UseSymmetries->False,Evaluate->True];
(* Behaviour under complex conjugation: "Hermitian" *)
xAct`xTensor`Private`DaggerCovD[covd[inds__]]^:=Apply[covd,TransposeDagger@DaggerIndex@IndexList[inds]];
];
SetNumberOfArguments[DefSpinCovD,{3,Infinity}];
Protect[DefSpinCovD];
UndefSpinCovD[covd_]:=(
If[FreeQ[$SpinCovDs,covd],Throw@Message[SpinCovDs::unknown,"spin covd",covd]];
Undef/@Flatten[VisitorsOf/@ServantsOf[covd]];
UndefCovD[covd];
);
SetNumberOfArguments[UndefSpinCovD,1];
Protect[DefSpinCovD];
SpinCovDQ[covd_]:=False;
Unprotect[FirstDerQ];
FirstDerQ[_Symbol?SpinCovDQ[__]]:=True;
Protect[FirstDerQ];
GiveOutputString[Chi,covd_]:=StringJoin["\[CapitalChi]","[",SymbolOfCovD[covd][[2]],"]"];
GiveOutputString[Phi,covd_]:=StringJoin["\[CapitalPhi]","[",SymbolOfCovD[covd][[2]],"]"];
GiveOutputString[Psi,covd_]:=StringJoin["\[CapitalPsi]","[",SymbolOfCovD[covd][[2]],"]"];
GiveOutputString[Lambda,covd_]:=StringJoin["\[CapitalLambda]","[",SymbolOfCovD[covd][[2]],"]"];
GiveOutputString[Omega,covd_]:=StringJoin["\[CapitalOmega]","[",SymbolOfCovD[covd][[2]],"]"];
Chi[covd_Symbol?CovDQ]:=GiveSymbol[Chi,covd];
Phi[covd_Symbol?CovDQ]:=GiveSymbol[Phi,covd];
Psi[covd_Symbol?CovDQ]:=GiveSymbol[Psi,covd];
Lambda[covd_Symbol?CovDQ]:=GiveSymbol[Lambda,covd];
Omega[covd_Symbol?CovDQ]:=GiveSymbol[Omega,covd];
compumessage[covd_,tensor_]:=Null;
xAct`xTensor`Private`DefSign[$ChiSign,"\!\(\*SubscriptBox[\(s\), \(\[CapitalChi]\)]\)",1];
xAct`xTensor`Private`DefSign[$PhiSign,"\!\(\*SubscriptBox[\(s\), \(\[CapitalPhi]\)]\)",1];
xAct`xTensor`Private`DefSign[$PsiSign,"\!\(\*SubscriptBox[\(s\), \(\[CapitalPsi]\)]\)",1];
xAct`xTensor`Private`DefSign[$LambdaSign,"\!\(\*SubscriptBox[\(s\), \(\[CapitalLambda]\)]\)",1];
xAct`xTensor`Private`DefSign[$OmegaSign,"\!\(\*SubscriptBox[\(s\), \(\[CapitalOmega]\)]\)",1];
ConstructRTSpinors[covd_,ef_,sigma_,metric_,options:OptionsPattern[]]:=With[{
RiemannName=AddSpinorPrefix[Riemann[ef],SpinorPrefix[sigma]],
RicciName=AddSpinorPrefix[Ricci[ef],SpinorPrefix[sigma]],
WeylName=If[metric=!=Null,AddSpinorPrefix[Weyl[ef],SpinorPrefix[sigma]]],
TFRicciName=If[metric=!=Null,AddSpinorPrefix[TFRicci[ef],SpinorPrefix[sigma]]],
TorsionName=If[TorsionQ[covd],AddSpinorPrefix[Torsion[ef],SpinorPrefix[sigma]]],
FRiemannName=AddSpinorPrefix[FRiemann[covd],SpinorPrefix[sigma]],
ChiName=Chi[covd],
PhiName=Phi[covd],
PsiName=If[metric=!=Null,Psi[covd]],
LambdaName=If[metric=!=Null,Lambda[covd]],
OmegaName=If[TorsionQ[covd],Omega[covd]],
vbundle=VBundleOfSolderingForm[sigma],
vbundledag=Dagger@VBundleOfSolderingForm[sigma],
base=BaseOfVBundle@VBundleOfSolderingForm[sigma],
tbundle=TangentBundleOfSolderingForm[sigma],
eps=SpinMetricOfSolderingForm[sigma],
epsdag=Dagger@SpinMetricOfSolderingForm[sigma],
LeviCivitaQ=metric=!=Null&&!TorsionQ[covd],
LeviCivitaTorsionQ=metric=!=Null&&TorsionQ[covd]
},
Module[{A,B,F,G,Ad,Bd,Fd,Gd,a,b,c,d,PsiNamedag,FRiemannNamedag,ChiNamedag,PhiNamedag,OmegaNamedag,MakeRuleOptions},
{A,B,F,G}=GetIndicesOfVBundle[vbundle,4,{}];
{Ad,Bd,Fd,Gd}=DaggerIndex/@{A,B,F,G};
{a,b,c,d}=GetIndicesOfVBundle[tbundle,4,{}];
(* Change temporarily default options for MakeRule *)
MakeRuleOptions=Options[MakeRule];
SetOptions[MakeRule,UseSymmetries->False,ContractMetrics->False];
(* Definition of curvature spinors (we check that the original inner curvature is different from zero *)
If[FRiemann[covd][-a,-b,-F,-G]=!=0,
DefSpinorOfTensor[FRiemannName[-A,-Ad,-B,-Bd,-F,-G],FRiemann[covd][-a,-b,-F,-G],sigma,Dagger->Complex,options];
FRiemannNamedag=Dagger[FRiemannName];
DefTensor[ChiName[-A,-B,-F,-G],base,Which[LeviCivitaTorsionQ,StrongGenSet[{1,3},GenSet[xAct`xPerm`Cycles[{1,2}],xAct`xPerm`Cycles[{3,4}]]],LeviCivitaQ,StrongGenSet[{1,3},GenSet[xAct`xPerm`Cycles[{1,2}],xAct`xPerm`Cycles[{3,4}],xAct`xPerm`Cycles[{1,3},{2,4}]]],True,Symmetric[{3,4}]],Dagger->Complex,PrintAs:>GiveOutputString[Chi,covd],Master->covd,FilterRules[{options},Options[DefTensor]],DefInfo->{"curvature spinor",""}];
ChiNamedag:=Dagger[ChiName];
DefTensor[PhiName[-A,-B,-Fd,-Gd],base,If[LeviCivitaQ,StrongGenSet[{1,3},GenSet[xAct`xPerm`Cycles[{1,2}],xAct`xPerm`Cycles[{3,4}]]],Symmetric[{3,4}]],If[LeviCivitaQ,Dagger->Hermitian,Dagger->Complex],PrintAs:>GiveOutputString[Phi,covd],Master->covd,FilterRules[{options},Options[DefTensor]],DefInfo->{"curvature spinor",""}];
PhiNamedag=Dagger[PhiName];
];
(*Computation of the decomposition rules for the curvature spinors*)
compumessage[covd,FRiemann];
If[xTensorQ@FRiemannName,
covd/:DecompositionRules[covd,FRiemann]=Flatten[{MakeRule[{FRiemannName[-A,-Ad,-B,-Bd,-F,-G],$ChiSign ChiName[-F,-G,-A,-B]epsdag[-Ad,-Bd]+eps[-A,-B]$PhiSign PhiName[-F,-G,-Ad,-Bd]}],MakeRule[{Evaluate@FRiemannNamedag[-Ad,-A,-Bd,-B,-Fd,-Gd],$ChiSign ChiNamedag[-Fd,-Gd,-Ad,-Bd]eps[-A,-B]+epsdag[-Ad,-Bd]$PhiSign PhiNamedag[-Fd,-Gd,-A,-B]}]}]
];
If[LeviCivitaQ,
DefTensor[LambdaName[],base,Dagger->Real,PrintAs:>GiveOutputString[Lambda,covd],Master->covd,FilterRules[{options},Options[DefTensor]],DefInfo->{"spinor scalar curvature",""}];
DefTensor[PsiName[-A,-B,-F,-G],base,Symmetric[{1,2,3,4}],Dagger->Complex,PrintAs:>GiveOutputString[Psi,covd],Master->covd,FilterRules[{options},Options[DefTensor]],DefInfo->{"Weyl spinor",""}];
PsiNamedag=Dagger[PsiName];
compumessage[covd,Chi];
(*SymmetryGroupOfTensor[ChiName]^=StrongGenSet[{1,3},GenSet[Cycles[{1,2}],Cycles[{3,4}]]];*)
covd/:DecompositionRules[covd,Chi]=Flatten[{MakeRule[{ChiName[-A,-B,-F,-G],($LambdaSign/$ChiSign) LambdaName[](eps[-A,-G]eps[-B,-F]+eps[-A,-F]eps[-B,-G])+(($PsiSign/$ChiSign)) PsiName[-A,-B,-F,-G]}],MakeRule[{Evaluate[ChiNamedag[-Ad,-Bd,-Fd,-Gd]], ($LambdaSign/$ChiSign)LambdaName[](epsdag[-Ad,-Gd]epsdag[-Bd,-Fd]+epsdag[-Ad,-Fd]epsdag[-Bd,-Gd])+(($PsiSign/$ChiSign))PsiNamedag[-Ad,-Bd,-Fd,-Gd]}]}];
];
(* This part will be executed only if the Torsion spinor has not been defined *)
If[xTensorQ[TorsionName],
If[$DefInfoQ,Print["** DefSpinCovD: Torsion spinor for tangent derivative ",ef," already defined"]],
DefSpinorOfTensor[TorsionName[-A,-Ad,-B,-Bd,-F,-Fd],Torsion[ef][-a,-b,-c],sigma,options];
];
(* Define the torsion spinor *)
If[TorsionQ@covd,
DefTensor[OmegaName[-Ad,-A,-B,-F],base,Symmetric[{3,4}],Dagger->Complex,PrintAs:>GiveOutputString[Omega,covd],Master->covd,FilterRules[{options},Options[DefTensor]],DefInfo->{"torsion spinor",""}];
OmegaNamedag=Dagger[OmegaName];
covd/:DecompositionRules[covd,Torsion]=
MakeRule[{TorsionName[-A,-Ad,-B,-Bd,-F,-Fd],epsdag[-Bd,-Fd]$OmegaSign OmegaName[-Ad,-A,-B,-F]+eps[-B,-F]$OmegaSign OmegaNamedag[-A,-Ad,-Bd,-Fd]}];
];
(* The remaining part will be executed only if the Riemann spinor has not been defined and if the Riemann and Ricci tensors do not vanish *)
If[xTensorQ[RiemannName]&&(Riemann[ef][-a,-b,-c,-d]=!=0)&&(Ricci[ef][-a,-b]=!=0),
If[$DefInfoQ,Print["** DefSpinCovD: Curvature spinors for tangent derivative ",ef," already defined"]],
DefSpinorOfTensor[RiemannName[-A,-Ad,-B,-Bd,-F,-Fd,-G,-Gd],Riemann[ef][-a,-b,-c,-d],sigma,options];
DefSpinorOfTensor[RicciName[-A,-Ad,-B,-Bd],Ricci[ef][-a,-b],sigma,options];
If[!LeviCivitaQ&&xTensorQ@RiemannName,
compumessage[covd,Riemann];
covd/:DecompositionRules[covd,Riemann]=MakeRule[{RiemannName[-A,-Ad,-B,-Bd,-F,-Fd,-G,-Gd],eps[-F,-G]FRiemannNamedag[-Ad,-A,-Bd,-B,-Gd,-Fd]+epsdag[-Fd,-Gd]FRiemannName[-A,-Ad,-B,-Bd,-G,-F]}]];
If[LeviCivitaQ,
PsiNamedag=Dagger[PsiName];
DefSpinorOfTensor[WeylName[-A,-Ad,-B,-Bd,-F,-Fd,-G,-Gd],Weyl[ef][-a,-b,-c,-d],sigma,options];
DefSpinorOfTensor[TFRicciName[-A,-Ad,-B,-Bd],TFRicci[ef][-a,-b],sigma,options];
compumessage[covd,Riemann];
covd/:DecompositionRules[covd,Riemann]=MakeRule[{RiemannName[-A,-Ad,-B,-Bd,-F,-Fd,-G,-Gd],-2(-eps[-A,-F]eps[-B,-G]epsdag[-Ad,-Fd]epsdag[-Bd,-Gd]+eps[-A,-G]eps[-B,-F]epsdag[-Ad,-Gd]epsdag[-Bd,-Fd])$LambdaSign LambdaName[]-eps[-G,-F]epsdag[-Ad,-Bd]$PhiSign PhiName[-A,-B,-Gd,-Fd]-eps[-A,-B]epsdag[-Gd,-Fd]$PhiSign PhiName[-G,-F,-Ad,-Bd]-epsdag[-Ad,-Bd]epsdag[-Gd,-Fd]$PsiSign PsiName[-A,-B,-G,-F]-eps[-A,-B]eps[-G,-F]$PsiSign PsiNamedag[-Ad,-Bd,-Gd,-Fd]}];
compumessage[covd,Ricci];
covd/:DecompositionRules[covd,Ricci]=MakeRule[{RicciName[-A,-Ad,-B,-Bd],6$LambdaSign LambdaName[]eps[-A,-B]epsdag[-Ad,-Bd]-2$PhiSign PhiName[-A,-B,-Ad,-Bd]}];
compumessage[covd,TFRicci];
covd/:DecompositionRules[covd,TFRicci]=MakeRule[{TFRicciName[-A,-Ad,-B,-Bd],-2$PhiSign PhiName[-A,-B,-Ad,-Bd]}];
(* We use the RicciScalar and not its spinor *)
compumessage[covd,RicciScalar];
covd/:DecompositionRules[covd,RicciScalar]=MakeRule[{Evaluate[RicciScalar[ef][]],24$LambdaSign LambdaName[]}];
compumessage[covd,Weyl];
covd/:DecompositionRules[covd,Weyl]=MakeRule[{WeylName[-A,-Ad,-B,-Bd,-F,-Fd,-G,-Gd],-epsdag[-Ad,-Bd]epsdag[-Gd,-Fd]$PsiSign PsiName[-A,-B,-G,-F]-eps[-A,-B]eps[-G,-F]$PsiSign PsiNamedag[-Ad,-Bd,-Gd,-Fd]}];
]
];
(* Return to original options *)
Options[MakeRule]=MakeRuleOptions;
]
];
Decomposition[expr_]:=Decomposition[expr,{FRiemann,Riemann,Ricci,TFRicci,RicciScalar,Weyl,Torsion}];
Decomposition[expr_,object_]:=Decomposition[expr,object,$SpinCovDs];
Decomposition[expr_,objects_List,covd_]:=Fold[Decomposition[#1,#2,covd]&,expr,objects];
Decomposition[expr_,object_,covds_List]:=Fold[Decomposition[#1,object,#2]&,expr,covds];
Decomposition[expr_,object_,covd_]:=expr/.DecompositionRules[covd,object];
DecompositionRules[covd_,object_]:={};
SetNumberOfArguments[Decomposition,{1,3}];
Protect[Decomposition];
DefBox[covd_Symbol]:=With[{boxcd=SymbolJoin["Box",covd]},
CovDQ[boxcd]^=True;
AppendTo[xAct`xTensor`Private`$MultiIndexCovDs,boxcd];
xAct`xTensor`Private`MakeLinearDerivative[{boxcd[A_,B_],boxcd[A,B]},True];
SymmetryGroupOfCovD[boxcd]^=Symmetric[{1,2},xAct`xPerm`Cycles];
ManifoldOfCovD[boxcd]^=ManifoldOfCovD[covd];
VBundlesOfCovD[boxcd]^=VBundlesOfCovD[covd];
DependenciesOfCovD[boxcd]^=DependenciesOfCovD[covd];
CovDOfBox[boxcd]^=covd;
boxcd/:Dagger[boxcd[A_,B_][expr_]]:=boxcd[DaggerIndex[A],DaggerIndex[B]][Dagger[expr]];
SymbolOfCovD[boxcd]^={First[SymbolOfCovD[covd]],StringJoin["\[EmptySquare]","[",Part[SymbolOfCovD@covd,2],"]"]};
xAct`xTensor`Private`SymbolRelations[boxcd,covd,{}];
Protect[boxcd];
];
BoxToCovD[expr_,boxcd_]:=With[{
cd=CovDOfBox@boxcd,
spin=VBundlesOfCovD[boxcd][[2]],spindag=VBundlesOfCovD[boxcd][[3]]},
expr/.{boxcd[A_,B_]@L_:>With[{Cdag=DummyIn[spindag]},xAct`xTensor`Symmetrize[cd[A,-Cdag]@cd[B,Cdag]@L,{A,B}]]/;ABIndexQ[A,spin]&&ABIndexQ[B,spin],boxcd[A_,B_]@L_:>With[{C=DummyIn[spin]},
xAct`xTensor`Symmetrize[cd[-C,A]@cd[C,B]@L,{A,B}]]/;ABIndexQ[A,spindag]&&ABIndexQ[B,spindag]}
];
SetNumberOfArguments[BoxToCovD,2];
Protect[BoxToCovD];