-
Notifications
You must be signed in to change notification settings - Fork 11
/
QLearning.kt
34 lines (31 loc) · 944 Bytes
/
QLearning.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
package lab.mars.rl.algo.td
import lab.mars.rl.algo.V_from_Q
import lab.mars.rl.algo.`ε-greedy`
import lab.mars.rl.model.impl.mdp.*
import lab.mars.rl.model.isNotTerminal
import lab.mars.rl.model.log
import lab.mars.rl.util.log.debug
import lab.mars.rl.util.math.max
import lab.mars.rl.util.tuples.tuple3
fun IndexedMDP.QLearning(
ε: Double,
α: (IndexedState, IndexedAction) -> Double,
episodes: Int): OptimalSolution {
val π = IndexedPolicy(QFunc { 0.0 })
val Q = QFunc { 0.0 }
for (episode in 1..episodes) {
log.debug { "$episode/$episodes" }
var s = started()
while (s.isNotTerminal) {
`ε-greedy`(s, Q, π, ε)
val a = π(s)
val (s_next, reward) = a.sample()
Q[s, a] += α(s, a) * (reward + γ * max(s_next.actions, 0.0) { Q[s_next, it] } - Q[s, a])
s = s_next
}
}
val V = VFunc { 0.0 }
val result = tuple3(π, V, Q)
V_from_Q(states, result)
return result
}