Skip to content

Latest commit

 

History

History

Saliency_DSS

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Saliency Detection with DSS

Max F-measure: 91.75% [Baseline: 90.61%]

Try on an image!

  1. Download the pretrained model [Google Drive|BaiduYunPan].
  2. Try it now!
    python predict.py --im_path [IM_PATH] \
                      --netG [MODEL_PATH] \
                      --thres [-1|161] \
                      --dgf --nn_dgf \
                      --post_sigmoid --cuda

Training on MSRA-B

  1. Download and unzip the saliency dataset MSRA-B.

  2. Make A-B (Image-Label) pairs.

    python scripts/preprocess.py --data_path [MSRA-B_ROOT] --mode train
    python scripts/preprocess.py --data_path [MSRA-B_ROOT] --mode valid
    python scripts/preprocess.py --data_path [MSRA-B_ROOT] --mode test
  3. Start training!

    • WITHOUT Guided Filtering Layer
    python main.py --dataroot [MSRA-B_ROOT]/AB --cuda --experiment [EXP_NAME]
    • WITH Guided Filtering Layer
    python main.py --dataroot [MSRA-B_ROOT]/AB --cuda --experiment [EXP_NAME] --dgf
    • Finetune
    python main.py --dataroot [MSRA-B_ROOT]/AB --cuda --experiment [EXP_NAME] --netG [MODEL_PATH] --dgf
  4. Evaluation

    python test.py --dataroot [MSRA-B_ROOT]/AB/test \
                   --netG [MODEL_PATH] --cuda \
                   --experiment [SAVE_FOLDER] \
                   --nn_dgf --post_sigmoid --dgf
  5. Calculate metrics

    1. Install SalMetric.
      git clone https://github.com/Andrew-Qibin/SalMetric && cd SalMetric 
      mkdir build && cd build
      cmake .. && make
    2. Calculate !
      cd [SAVE_FOLDER]
      [SalMetric_ROOT]/build/salmetric test.txt [WORKER_NUM]

Acknowledgement

A part of the code was adapted from DSS.