Skip to content

Latest commit

 

History

History
executable file
·
764 lines (519 loc) · 23.6 KB

CH3-高级特性.md

File metadata and controls

executable file
·
764 lines (519 loc) · 23.6 KB

第三章 高级特性

掌握了 Python 的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

比如构造一个1, 3, 5, 7, ..., 99的列表,可以通过循环实现:

L = []
n = 1
while n <= 99:
    L.append(n)
    n = n + 2
print(L)

🔍 使用列表生成式,来解决这个问题:

list = [i for i in range(1,101,2)]
print(list)

取 list 的前一半的元素,也可以通过循环实现。

但是在 Python 中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍 Python 中非常有用的高级特性,**1 行代码能实现的功能,决不写 5 行代码。**请始终牢记,代码越少,开发效率越高。

3.1 切片

3.1.1 list 切片

取一个 list 或 tuple 的部分元素是非常常见的操作。比如,一个 list 如下:

L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前 3 个元素,应该怎么做?

可能会像这样解决:

[L[0],L[1],L[2]]

image-20200712160938388

但是,如果是取前 N 个元素就没辙了。

🎍 取前 N 个元素,也就是索引为 0-(N-1) 的元素,可以用循环:

r = []
n = 3
for i in range(n):
    r.append(L[i])
r

image-20200712214348838

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python 提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前 3 个元素,用一行代码就可以完成切片:

L[0:3]

image-20200712214632198

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引012,正好是 3 个元素。

如果第一个索引是0,还可以省略:

L[:3]

也可以从索引 1 开始,取出 2 个元素出来:

L[1:3]

类似的,既然 Python 支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:

 L[-2:]

image-20200712220306806

记住倒数第一个元素的索引是-1

⭐ 切片格式:[开头:结束:步长]

  • 开头:当步长 >0 时,开头不写默认 0,即从第一位开始切片

    当步长 < 0时,开头不写默认 -1 ,即从最后一位开始倒着切片

  • 结束:当步长 > 0 时,结束不写默认为列表长度加一,即切片到最后一位结束

    当步长 < 0 时,结束不写默认为负的列表长度减一,即倒着切片到第一位结束

  • 步长:默认为1,> 0 是从左往右走,< 0 是从右往左走

💬 切片操作十分有用。我们先创建一个 0 - 99 的数列:

L = list(range(100))
L

可以通过切片轻松取出某一段数列。比如前 10 个数:

L[:10]

image-20200712220546937

后 10 个数:

L[-10:]

前 11 - 20 个数:

L[10:20]

前 10 个数,每两个取一个:

L[:10:2]

所有数,每 5 个取一个:

L[::5]

甚至什么都不写,只写[:]就可以原样复制一个 list:

 L[:]

3.1.2 tuple 切片

!> tuple 也是一种 list,唯一区别是 tuple 不可变。因此,tuple 也可以用切片操作,只是操作的结果仍是 tuple:

(0, 1, 2, 3, 4, 5)[:3]

image-20200712222247480

3.1.3 str 切片

字符串'xxx'也可以看成是一种 list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

'ABCDEFG'[:3]

image-20200712222833885

'ABCDEFG'[::2]

image-20200712223059989

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python 没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

✏️ 练习题:

利用切片操作,实现一个 trim() 函数,去除字符串首尾的空格,注意不要调用 str 的strip()方法:

def trim(s):
    while s[:1] == ' ':
        s = s[1:]
    while s[-1:] == ' ':
        s = s[:-1]
    return s

✏️ 小结:

有了切片操作,很多地方循环就不再需要了。Python 的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

3.2 迭代

定义:如果给定一个 list 或 tuple,我们可以通过for循环来遍历这个 list 或 tuple,这种遍历我们称为迭代(Iteration)。

迭代是通过 for ... in 来完成的,Python 的for循环抽象程度要高于 C 的for循环,因为 Python 的for循环不仅可以用在 list 或 tuple 上,还可以作用在其他可迭代对象上。

list 这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如 dict 就可以迭代:

d = {'a': 1, 'b': 2, 'c': 3}
for key in d:
    print(key)

因为 dict 的存储不是按照 list 的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

🍗 默认情况下,dict 迭代的是 key。如果要迭代 value,可以用for value in d.values(),如果要同时迭代 key 和 value,可以用for k, v in d.items()

由于字符串也是可迭代对象,因此,也可以作用于for循环:

for ch in 'ABC':
    print(ch)

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过 collections 模块的 Iterable 类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

最后一个小问题,如果要对 list 实现类似 Java 那样的下标循环怎么办?Python 内置的enumerate函数可以把一个 list 变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

上面的for循环里,同时引用了两个变量,在 Python 里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

✏️ 练习题:

请使用迭代查找一个 list 中最小和最大值,并返回一个 tuple:

def findMinAndMax(L):
    if L == []:
        return (None, None)
    else:
        MIN = L[0]
        MAX = L[0]
        for i in L:
            MIN = min(MIN, i)
            MAX = max(MAX, i) 
        return (MIN, MAX)
# 测试
if findMinAndMax([]) != (None, None):
    print('测试失败!')
elif findMinAndMax([7]) != (7, 7):
    print('测试失败!')
elif findMinAndMax([7, 1]) != (1, 7):
    print('测试失败!')
elif findMinAndMax([7, 1, 3, 9, 5]) != (1, 9):
    print('测试失败!')
else:
    print('测试成功!')

结果图:

结果图

✏️ 小结:

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

3.3 列表生成式

列表生成式即 List Comprehensions,是 Python 内置的非常简单却强大的可以用来创建 list 的生成式。

举个例子,要生成 list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

image-20200716110005465

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?

  • 方法一是循环:
L = []
for x in range(1, 11):
    L.append(x * x)
L

image-20200716110241249

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的 list:

  • 方法二:列表生成式
[x * x for x in range(1, 11)]

image-20200716110448050

👒 写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把 list 创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for 循环后面还可以加上 if 判断,这样我们就可以筛选出仅偶数的平方:

[x * x for x in range(1, 11) if x % 2 == 0]

image-20200716110714610

还可以使用两层循环,可以生成全排列:

[m + n for m in 'ABC' for n in 'XYZ']

image-20200716110813806

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

import os # 导入os模块,模块的概念后面讲到
[d for d in os.listdir('.')] # os.listdir可以列出文件和目录

image-20200716111017314

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代 key 和 value:

d = {'x': 'A', 'y': 'B', 'z': 'C' }
for k, v in d.items():
    print(k, '=', v)

image-20200716111306467

因此,列表生成式也可以使用两个变量来生成 list:

d = {'x': 'A', 'y': 'B', 'z': 'C' }
[k + '=' + v for k, v in d.items()]

image-20200716111534526

最后把一个 list 中所有的字符串变成小写:

L = ['Hello', 'World', 'IBM', 'Apple']
[s.lower() for s in L]

image-20200716111755472

3.3.1 if ... else

使用列表生成式的时候,有些童鞋经常搞不清楚if...else的用法。

例如,以下代码正常输出偶数:

[x for x in range(1, 11) if x % 2 == 0]

但是,我们不能在最后的if加上else

[x for x in range(1, 11) if x % 2 == 0 else 0]

image-20200716112208908

这是因为跟在for后面的if是一个筛选条件,不能带else,否则如何筛选?

另一些童鞋发现把if写在for前面必须加else,否则报错:

image-20200716112356893

这是因为for前面的部分是一个表达式,它必须根据x计算出一个结果。因此,考察表达式:x if x % 2 == 0,它无法根据x计算出结果,因为缺少else,必须加上else

[x if x % 2 == 0 else -x for x in range(1, 11)]

image-20200716112506596

上述for前面的表达式x if x % 2 == 0 else -x才能根据x计算出确定的结果。

可见,在一个列表生成式中,for前面的if ... else是表达式,而for后面的if是过滤条件,不能带else

✏️ 练习题:

如果list中既包含字符串,又包含整数,由于非字符串类型没有lower()方法,所以列表生成式会报错:

image-20200716112807607

使用内建的isinstance函数可以判断一个变量是不是字符串:

image-20200716113013011

请修改列表生成式,通过添加if语句保证列表生成式能正确地执行:

L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s,str)]
# 测试:
print(L2)
if L2 == ['hello', 'world', 'apple']:
    print('测试通过!')
else:
    print('测试失败!')

image-20200716113244975

✏️ 小结:

运用列表生成式,可以快速生成 list,可以通过一个 list 推导出另一个 list,而代码却十分简洁。

3.4 生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含 100 万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的 list,从而节省大量的空间。在 Python 中,这种一边循环一边计算的机制,称为生成器:generator。

🎉 要创建一个 generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个 generator:

image-20200716114555027

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个 generator。

我们可以直接打印出 list 的每一个元素,但我们怎么打印出 generator 的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得 generator 的下一个返回值:

image-20200716115124114

我们讲过,generator 保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为 generator 也是可迭代对象:

g = (x * x for x in range(10))
for n in g:
    print(n)

所以,我们创建了一个 generator 后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator 非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

注意:

赋值语句:a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量 t 就可以赋值。

上面的函数可以输出斐波那契数列的前 N 个数:

image-20200716124358250

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似 generator。

也就是说,上面的函数和 generator 仅一步之遥。要把fib函数变成 generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

image-20200716124517165

这就是定义 generator 的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个 generator:

这里,最难理解的就是 generator 和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成 generator 的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个 generator,依次返回数字 1,3,5:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

调用该 generator 时,首先要生成一个 generator 对象,然后用next()函数不断获得下一个返回值:

image-20200716124859127

可以看到,odd不是普通函数,而是 generator,在执行过程中,遇到yield就中断,下次又继续执行。执行 3 次yield后,已经没有yield可以执行了,所以,第 4 次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成 generator 后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

for n in fib(6):
    print(n)

但是用for循环调用 generator 时,发现拿不到 generator 的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

g = fib(6)
while True:
    try:
        x = next(g)
        print('g:', x)
    except StopIteration as e:
        print('Generator return value:', e.value)
        break

image-20200716125328414

关于如何捕获错误,后面的错误处理还会详细讲解。

✏️ 练习题:

杨辉三角定义如下:

          1
         / \
        1   1
       / \ / \
      1   2   1
     / \ / \ / \
    1   3   3   1
   / \ / \ / \ / \
  1   4   6   4   1
 / \ / \ / \ / \ / \
1   5   10  10  5   1

把每一行看做一个 list,试写一个 generator,不断输出下一行的 list:

def triangles():
    L = [1]
    while True:
        yield L 
        L = [1] + [L[i] + L[i+1] for i in range(len(L) - 1)] + [1]
    pass

测试:

n = 0
results = []
for t in triangles():
    results.append(t)
    n = n + 1
    if n == 10:
        break

for t in results:
    print(t)

if results == [
    [1],
    [1, 1],
    [1, 2, 1],
    [1, 3, 3, 1],
    [1, 4, 6, 4, 1],
    [1, 5, 10, 10, 5, 1],
    [1, 6, 15, 20, 15, 6, 1],
    [1, 7, 21, 35, 35, 21, 7, 1],
    [1, 8, 28, 56, 70, 56, 28, 8, 1],
    [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
]:
    print('测试通过!')
else:
    print('测试失败!')

小结:

generator 是非常强大的工具,在 Python 中,可以简单地把列表生成式改成 generator,也可以通过函数实现复杂逻辑的 generator。

要理解 generator 的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的 generator 来说,遇到return语句或者执行到函数体最后一行语句,就是结束 generator 的指令,for循环随之结束。

请注意区分普通函数和 generator 函数,普通函数调用直接返回结果:

>>> r = abs(6)
>>> r
6

generator 函数的“调用”实际返回一个 generator 对象:

>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>

3.5 迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的 generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为 Python 的Iterator对象表示的是一个数据流,Iterator 对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用 list 是永远不可能存储全体自然数的。

小结:

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python 的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

3.6 参考资料