
10/2/23, 6:53 AM Production Deployment guidelines - APK Documentation 1.0.0

localhost:8000/en/latest/administration/production-deployment-guideline/ 1/6

Production Deployment guideline

This document provide the steps for APK production deployment.

WSO2 APK can be configured through values.yaml file. Please refer to Customize Configurations for
information on how to use a customized values file for APK deployment. When deploying WSO2

APK in a production environment, we strongly recommend following these guidelines.

Choose the correct deployment pattern

Please refer this document on how to choose the correct pattern for you environment.

Change the hostnames and vhosts

By default, APK uses wso2.com for its hostnames and vhosts for the gateway. You need to change

these values to your own domain, which you plan to use for production. The following values.yaml

values should be modified:

Configuration Description

wso2.apk.listen

er.hostname

This configuration is used to specify the hostname for listening to API

requests related to the APK system. It should be set to your desired domain
for production.

wso2.apk.dp.ga

teway.listener.ho

stname

This configuration is used to specify the hostname for listening to API

requests made by users deploying their APIs. It should be set to your desired
domain for production.

wso2.apk.dp.co

nfigdeployer.vh

osts

This configuration is utilized by the Config Deployer Service to create API

Custom Resources (CRs) in response to user API creation requests. It should
be set to the appropriate value for production use.

By modifying these configurations, you can ensure that APK operates with the correct hostnames
and vhosts for your production environment.

http://localhost:8000/en/latest/setup/Customize-Configurations/
http://localhost:8000/en/latest/administration/deployment-patterns/

10/2/23, 6:53 AM Production Deployment guidelines - APK Documentation 1.0.0

localhost:8000/en/latest/administration/production-deployment-guideline/ 2/6

For example if you want to deploy a production environment and you have a domain name

example.com and you want to expose your API's through prod.gw.example.com and expose APK

system APIs through prod.apk.example.com then

wso2.apk.listener.hostname: 'prod.apk.example.com'

wso2.apk.dp.gateway.listener.hostname: 'gw.example.com'

wso2.apk.dp.configdeployer.vhosts: [{"hosts":

["gw.example.com"],"name":"prod","type":"production"}]

For further clarification on the keys, please refer to the description and default values here

Change certificates

The default APK deployment uses a self-signed certificate for APK components. Default APK

configuration installs cert-manager in the cluster.

For a production environment, it is recommended to use CA-validated public certificates for

internet-facing services. In APK, certificates are used for servers and listeners. Listeners are

responsible for exposing services to the internet, while servers are not directly accessible from the
internet. In a production environment, it's crucial to configure CA-validated public certificates for

listeners. Non-public or self-signed certificates can be used for servers, as these server names are

internal. Let's explore how to configure these certificates.

Listeners Description and hostnames

Gateway

listener

Listens for for API invocation requests. Hostname can be configures through

values.yaml's wso2.apk.dp.gateway.listener.dns . Default value is
[".gw.wso2.com",".sandbox.gw.wso2.com","prod.gw.wso2.com"]

APK system

api listener

Listens for for APK system related requests(Ex: API creation rest request).

Hostname can be configures through values.yaml's wso2.apk.listener.hostname .
Default value is "api.am.wso2.com"

Servers Hostnames

Adapter
server

<helm-installation-name>-adapter-service.<namespace-name>.svc , <helm-installation-

name>-adapter-service.<namespace-name>.svc.cluster.local

https://github.com/wso2/apk/blob/main/helm-charts/README.md
https://cert-manager.io/

10/2/23, 6:53 AM Production Deployment guidelines - APK Documentation 1.0.0

localhost:8000/en/latest/administration/production-deployment-guideline/ 3/6

Servers Hostnames

Common
controller

server

<helm-installation-name>-common-controller-service.<namespace-name>.svc , <helm-

installation-name>-common-controller-service.<namespace-name>.svc.cluster.local

Config
deployer

server

<helm-installation-name>-config-ds-service.<namespace-name>.svc , <helm-installation-

name>-config-ds-service.<namespace-name>.svc.cluster.local

Enforcer
server

<helm-installation-name>-enforcer-service.<namespace-name>.svc , <helm-installation-

name>-enforcer-service.<namespace-name>.svc.cluster.local

Gateway
server

<helm-installation-name>-gateway-service.<namespace-name>.svc , <helm-installation-

name>-gateway-service.<namespace-name>.svc.cluster.local

Ratelimitter
server

<helm-installation-name>-ratelimiter-service.<namespace-name>.svc , <helm-installation-

name>-ratelimiter-service.<namespace-name>.svc.cluster.local

1. Use cert manager

By default, APK installs cert manager in your cluster and employs a SelfSigned issuer for certificate

validations. To utilize cert manager for handling the certificates, you will need to create Issuers.
Choose the type of Issuer you are going to use for listeners and servers, and create the Issuers in

accordance with the cert-manager documentation document. You will need to create two issuers:

one for listeners and one for servers. Once created, update the values.yaml configuration as

follows.

2. Use the certificate files

Prerequisites

certmanager:

 listeners:

 issuerName: "<issuer-name-created-for-listeners>"

 issuerKind: "ClusterIssuer" # or "Issuer" Refer to cert-manager's issuer doc

 servers:

 issuerName: "<issuer-name-created-for-servers>"

 issuerKind: "ClusterIssuer" # or "Issuer" Refer to cert-manager's issuer doc

https://cert-manager.io/docs/configuration/
https://cert-manager.io/docs/configuration/

10/2/23, 6:53 AM Production Deployment guidelines - APK Documentation 1.0.0

localhost:8000/en/latest/administration/production-deployment-guideline/ 4/6

For all the components(Listeners and servers) prepare the following required files.

1. TLS certificate verified by a Ceriticate Authority (tls.crt)

2. Private key associated with the TLS certificate(tls.key)

3. Certificate Authority's (CA) root certificate(ca.crt)

For each component create a secret in the same namespace as APK is deployed with the following

key-value pairs:

tls.crt - Base64 encoded value of tls.crt file

tls.key - Base64 encoded value of tls.key file

ca.crt - Base64 encoded value of ca.crt file

You can use the following command to create the secret from the files

To update the gateway listener certificates, update the following values.yaml config

To update the APK system listener certificates, update the following values.yaml config

To update the APK system servers certificates, update the following values.yaml config

kubectl create secret generic <SECRET_NAME> --from-file=tls.crt=path/to/tls.crt --from-
file=tls.key=path/to/tls.key --from-file=ca.crt=path/to/ca.crt -n <NAMESPACE>

wso2:

 apk:

 dp:

 gateway:

 listener:

 secretName: <created-secret-name-for-gateway-listener>

wso2:

 apk:

 listener:

 secretName: <created-secret-name-for-apk-system-listener>

configs:

 tls:

 secretName: "<Name of the created secret>"

 certKeyFilename: "tls.key"

 certFilename: "tls.crt"

 certCAFilename: "ca.crt"

10/2/23, 6:53 AM Production Deployment guidelines - APK Documentation 1.0.0

localhost:8000/en/latest/administration/production-deployment-guideline/ 5/6

Servers and their configs location in the value.yaml

Servers config location

Adapter server wso2.apk.dp.adapter.configs.tls

Common controller server wso2.apk.dp.configdeployer.deployment.configs.tls

Config deployer server wso2.apk.dp.configdeployer.deployment.configs.tls

Enforcer server wso2.apk.dp.gatewayRuntime.deployment.enforcer.configs.tls

Gateway server wso2.apk.dp.gatewayRuntime.deployment.router.configs.tls

Ratelimitter server wso2.apk.dp.ratelimiter.deployment.configs.tls

Remove default IDP

APK comes with a default IDP which is not production-ready. Disable the default IDP and use a

production-ready IDP solution. Please follow these guidelines to setup the production ready IDP

Disable the default idp by changing the following value to false in values.yaml

Use a production grade Redis

APK uses a built-in standalone Redis service which is not suitable for production usage. Please use
a production grade Redis. You can update the following values to configure the Redis configuration

in APK:

wso2.apk.dp.redis.type

wso2.apk.dp.redis.url

wso2.apk.dp.redis.tls

wso2.apk.dp.redis.auth.certificatesSecret

idp:

 enabled: false

https://apk.docs.wso2.com/en/latest/setup/identity-platform/idp/idp-overview/

10/2/23, 6:53 AM Production Deployment guidelines - APK Documentation 1.0.0

localhost:8000/en/latest/administration/production-deployment-guideline/ 6/6

wso2.apk.dp.redis.auth.secretKey

wso2.apk.dp.redis.poolSize

Disable the default redis that comes with the APK deployment
- redis.enabled: bool

Protect gateway admin port

APK uses EnvoyProxy in the router implementation. EnvoyProxy offers an administrator interface

that can be used to query and modify different aspects of the server. In the production
environment, we should disable or restrict access to this port. By default, APK exposes this

interface through port 9000 . To disable external access to the port, you can set the following Helm

value to false :
 wso2.apk.dp.gatewayRuntime.deployment.router.adminInterfaceEnabled

If admin port is enabled, it is critical that access to the administration interface is only allowed via

a secure network. It is also critical that hosts that access the administration interface are only

attached to the secure network (i.e., to avoid CSRF attacks). This involves setting up an

appropriate firewall.

