-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmake_predictions.py
221 lines (195 loc) · 7.85 KB
/
make_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import os
import sys
import time
sys.path.append('./efficientdet')
sys.path.append('./classifier')
import cv2
from efficientnet_pytorch import EfficientNet
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torchvision.transforms as T
from tqdm import tqdm
from demo import (get_output, set_model, rescale_bboxes,
plot_results, get_transforms)
from models.efficientnet import LitterClassification
def get_args_parser():
parser = argparse.ArgumentParser(
'Test modified efficientdet on one image')
parser.add_argument(
'--img', metavar='IMG',
help='path to image, could be url',
default='https://www.fyidenmark.com/images/denmark-litter.jpg')
parser.add_argument(
'--save', metavar='OUTPUT',
help='path to save image with predictions (if None show image)',
default=None)
parser.add_argument('--classes', nargs='+', default=[
'bio', 'glass', 'metals and plastic',
'non recyclable', 'other', 'paper', 'unknown'])
parser.add_argument(
'--cls_name', type=str, default='efficientnet-b2',
help='classifier name (default: efficientnet-b2)')
parser.add_argument(
'--det_name', type=str, default='tf_efficientdet_d2',
help='detector name (default: tf_efficientdet_d2)')
parser.add_argument(
'--classifier', type=str,
help='path to classifier checkpoint')
parser.add_argument(
'--detector', type=str,
help='path to detector checkpoint')
parser.add_argument(
'--device', type=str, default='cpu',
help='device to evaluate model (default: cpu)')
parser.add_argument(
'--prob_threshold', type=float, default=0.17,
help='probability threshold to show results (default: 0.17)')
parser.add_argument(
'--cls_th', type=float, default=0.5,
help='probability threshold to show results (default: 0.5)')
parser.add_argument(
'--video', action='store_true', default=False,
help="If true, we treat impute as video (default: False)")
parser.set_defaults(redundant_bias=None)
return parser
def get_classifier(num_classes,
cls_name, checkpoint, device):
model = LitterClassification.load_from_checkpoint(
checkpoint, model_name=cls_name, lr=0, decay=0)
return model.to(device)
def save_frames(args, img_size, num_iter=45913):
if not os.path.exists(args.save):
os.makedirs(args.save)
cap = cv2.VideoCapture(args.img)
counter = 0
pbar = tqdm(total=num_iter+1)
num_classes = len(args.classes)
# detector
model = set_model(args.det_name, 1, args.detector, args.device)
model.eval()
model.to(args.device)
# classifier
classifier = get_classifier(
num_classes+1, args.cls_name, args.classifier, args.device)
classifier.eval()
while(cap.isOpened()):
ret, img_real = cap.read()
if img_real is None:
print("END")
break
# scale + BGR to RGB
inference_size = (768, 768)
scaled_img = cv2.resize(img_real[:, :, ::-1], inference_size)
transform = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# mean-std normalize the input image (batch-size: 1)
img_tens = transform(scaled_img).unsqueeze(0).to(args.device)
# Inference
t0 = time.time()
with torch.no_grad():
# propagate through the model
output = model(img_tens)
t1 = time.time()
# keep only predictions above set confidence
bboxes_keep = output[0, output[0, :, 4] > args.prob_threshold]
probas = bboxes_keep[:, 4:]
# convert boxes to image scales
bboxes_scaled = rescale_bboxes(bboxes_keep[:, :4],
(img_real.shape[1], img_real.shape[0]),
inference_size)
# 2) Classify
bboxes_final = []
cls_prob = []
img_pill = Image. fromarray(img_real)
for p, (xmin, ymin, xmax, ymax) in zip(
probas, bboxes_scaled.tolist()):
img = get_transforms(
img_pill.crop((xmin, ymin, xmax, ymax)), img_size)
# propagate through the model
outputs = classifier({'image': img})
p[1] = torch.topk(outputs, k=1).indices.squeeze(0).tolist()[0]
p[0] = torch.softmax(outputs, dim=1)[0, int(p[1])].item()
if p[0] >= args.cls_th:
bboxes_final.append((xmin, ymin, xmax, ymax))
cls_prob.append(p)
txt = "Detect-waste %s Threshold=%.2f " \
"Inference %dx%d GPU: %s Inference time %.3fs" % \
(args.det_name, args.prob_threshold, inference_size[0],
inference_size[1], torch.cuda.get_device_name(0),
t1 - t0)
result = get_output(img_real, probas, bboxes_scaled,
args.classes, txt)
cv2.imwrite(os.path.join(args.save, 'img%08d.jpg' % counter), result)
counter += 1
pbar.update(1)
del img_real
del img_pill
del img_tens
del result
cap.release()
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
img_size = EfficientNet.get_image_size(args.cls_name)
if args.video:
save_frames(args, img_size=img_size)
else:
# get full image
if args.img.startswith('https'):
import requests
im = Image.open(
requests.get(args.img, stream=True).raw).convert('RGB')
dir_list = range(1)
elif os.path.isdir(args.img):
dir_list = os.listdir(args.img)
else:
im = Image.open(args.img).convert('RGB')
dir_list = range(1)
save_path = args.save
# prepare models for evaluation
torch.set_grad_enabled(False)
# detector
detector = set_model(args.det_name, 1,
args.detector, args.device)
detector.eval()
# classifier
num_classes = len(args.classes)
classifier = get_classifier(
num_classes+1, args.cls_name, args.classifier, args.device)
classifier.eval()
for f in dir_list:
if os.path.isdir(args.img):
ifile = os.path.join(args.img, f)
im = Image.open(ifile).convert('RGB')
save_path = os.path.join(args.save, f)
# 1) Localize
# mean-std normalize the input image (batch-size: 1)
img = get_transforms(im)
# propagate through the model
outputs = detector(img.to(args.device))
# keep only predictions above set confidence
bboxes_keep = outputs[0, outputs[0, :, 4] > args.prob_threshold]
probas = bboxes_keep[:, 4:]
# convert boxes to image scales
bboxes_scaled = rescale_bboxes(bboxes_keep[:, :4], im.size,
tuple(img.size()[2:]))
# 2) Classify
bboxes_final = []
cls_prob = []
for p, (xmin, ymin, xmax, ymax) in zip(
probas, bboxes_scaled.tolist()):
img = get_transforms(
im.crop((xmin, ymin, xmax, ymax)), img_size)
# propagate through the model
outputs = classifier({'image': img})
p[1] = torch.topk(outputs, k=1).indices.squeeze(0).tolist()[0]
p[0] = torch.softmax(outputs, dim=1)[0, int(p[1])].item()
if p[0] >= args.cls_th:
bboxes_final.append((xmin, ymin, xmax, ymax))
cls_prob.append(p)
# plot and save demo image
plot_results(im, cls_prob, bboxes_final, args.classes, save_path)