-
Notifications
You must be signed in to change notification settings - Fork 15
/
config.py
472 lines (400 loc) · 22.9 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import json
import logging
import os
import sys
import time
import torch
import argparse
def init_opt(description):
parser = argparse.ArgumentParser(
description=description,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
preprocess_opts(parser)
model_opts(parser)
train_opts(parser)
predict_opts(parser)
opt = parser.parse_args()
if opt.seed > 0:
torch.manual_seed(opt.seed)
if torch.cuda.is_available() and not opt.gpuid:
opt.gpuid = 0
if hasattr(opt, 'train_ml') and opt.train_ml:
opt.exp += '.ml'
if hasattr(opt, 'train_rl') and opt.train_rl:
opt.exp += '.rl'
if hasattr(opt, 'copy_attention') and opt.copy_attention:
opt.exp += '.copy'
# if hasattr(opt, 'bidirectional') and opt.bidirectional:
# opt.exp += '.bi-directional'
# else:
# opt.exp += '.uni-directional'
# fill time into the name
if opt.exp_path.find('%s') > 0:
opt.exp_path = opt.exp_path % (opt.exp, opt.timemark)
# Path to outputs of predictions.
setattr(opt, 'pred_path', os.path.join(opt.exp_path, 'pred/'))
# Path to checkpoints.
setattr(opt, 'model_path', os.path.join(opt.exp_path, 'model/'))
# Path to log output.
setattr(opt, 'log_path', os.path.join(opt.exp_path, 'log/'))
setattr(opt, 'log_file', os.path.join(opt.log_path, 'output.log'))
# Path to plots.
setattr(opt, 'plot_path', os.path.join(opt.exp_path, 'plot/'))
if not os.path.exists(opt.exp_path):
os.makedirs(opt.exp_path)
if not os.path.exists(opt.pred_path):
os.makedirs(opt.pred_path)
if not os.path.exists(opt.model_path):
os.makedirs(opt.model_path)
if not os.path.exists(opt.log_path):
os.makedirs(opt.log_path)
if not os.path.exists(opt.plot_path):
os.makedirs(opt.plot_path)
# dump the setting (opt) to disk in order to reuse easily
if opt.train_from:
train_from_model_dir = opt.train_from[:opt.train_from.rfind('model/') + 6]
prev_opt = torch.load(
open(os.path.join(train_from_model_dir, opt.exp + '.initial.config'), 'rb')
)
prev_opt.seed = opt.seed
prev_opt.train_from = opt.train_from
prev_opt.save_model_every = opt.save_model_every
prev_opt.run_valid_every = opt.run_valid_every
prev_opt.report_every = opt.report_every
prev_opt.test_dataset_names = opt.test_dataset_names
prev_opt.exp = opt.exp
prev_opt.vocab = opt.vocab
prev_opt.exp_path = opt.exp_path
prev_opt.pred_path = opt.pred_path
prev_opt.model_path = opt.model_path
prev_opt.log_path = opt.log_path
prev_opt.log_file = opt.log_file
prev_opt.plot_path = opt.plot_path
for k,v in vars(opt).items():
if not hasattr(prev_opt, k):
setattr(prev_opt, k, v)
opt = prev_opt
else:
torch.save(opt,
open(os.path.join(opt.model_path, opt.exp + '.initial.config'), 'wb')
)
json.dump(vars(opt), open(os.path.join(opt.model_path, opt.exp + '.initial.json'), 'w'))
return opt
def init_logging(logger_name, log_file, redirect_to_stdout=False, level=logging.INFO):
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(module)s: %(message)s',
datefmt='%m/%d/%Y %H:%M:%S' )
if not os.path.exists(log_file[: log_file.rfind(os.sep)]):
os.makedirs(log_file[: log_file.rfind(os.sep)])
fh = logging.FileHandler(log_file)
fh.setFormatter(formatter)
fh.setLevel(level)
logger = logging.getLogger(logger_name)
logger.addHandler(fh)
logger.setLevel(level)
if redirect_to_stdout:
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(formatter)
ch.setLevel(level)
logger.addHandler(ch)
logger.info('Initializing logger: %s' % logger_name)
logger.info('Making log output file: %s' % log_file)
logger.info(log_file[: log_file.rfind(os.sep)])
return logger
def model_opts(parser):
"""
These options are passed to the construction of the model.
Be careful with these as they will be used during translation.
"""
# Embedding Options
parser.add_argument('-word_vec_size', type=int, default=300,
help='Word embedding for both.')
parser.add_argument('-position_encoding', action='store_true',
help='Use a sin to mark relative words positions.')
parser.add_argument('-share_decoder_embeddings', action='store_true',
help='Share the word and out embeddings for decoder.')
parser.add_argument('-share_embeddings', action='store_true',
help="""Share the word embeddings between encoder
and decoder.""")
# RNN Options
parser.add_argument('-encoder_type', type=str, default='rnn',
choices=['rnn', 'brnn', 'mean', 'transformer', 'cnn', 'bert'],
help="""Type of encoder layer to use.""")
parser.add_argument('-decoder_type', type=str, default='rnn',
choices=['rnn', 'transformer', 'cnn'],
help='Type of decoder layer to use.')
parser.add_argument('-enc_layers', type=int, default=1,
help='Number of layers in the encoder')
parser.add_argument('-dec_layers', type=int, default=1,
help='Number of layers in the decoder')
parser.add_argument('-rnn_size', type=int, default=512,
help='Size of LSTM hidden states')
# parser.add_argument('-input_feed', type=int, default=1,
# help="""Feed the context vector at each time step as
# additional input (via concatenation with the word
# embeddings) to the decoder.""")
parser.add_argument('-rnn_type', type=str, default='LSTM',
choices=['LSTM', 'GRU'],
help="""The gate type to use in the RNNs""")
# parser.add_argument('-residual', action="store_true",
# help="Add residual connections between RNN layers.")
parser.add_argument('-input_feeding', action="store_true",
help="Apply input feeding or not. Feed the updated hidden vector (after attention)"
"as new hidden vector to the decoder (Luong et al. 2015). "
"Feed the context vector at each time step after normal attention"
"as additional input (via concatenation with the word"
"embeddings) to the decoder.")
parser.add_argument('-bidirectional',
action = "store_true",
help="whether the encoder is bidirectional")
# Attention options
parser.add_argument('-attention_mode', type=str, default='general',
choices=['dot', 'general', 'concat'],
help="""The attention type to use:
dot or general (Luong) or concat (Bahdanau)""")
parser.add_argument('-target_attention_mode', type=str, default='general',
choices=['dot', 'general', 'concat', None],
help="""The attention type to use: dot or general (Luong) or concat (Bahdanau)""")
# Genenerator and loss options.
parser.add_argument('-copy_attention', action="store_true", default=True,
help='Train a copy model.')
parser.add_argument('-copy_mode', type=str, default='general',
choices=['dot', 'general', 'concat'],
help="""The attention type to use: dot or general (Luong) or concat (Bahdanau)""")
parser.add_argument('-copy_input_feeding', action="store_true",
help="Feed the context vector at each time step after copy attention"
"as additional input (via concatenation with the word"
"embeddings) to the decoder.")
parser.add_argument('-reuse_copy_attn', action="store_true",
help="Reuse standard attention for copy (see See et al.)")
parser.add_argument('-copy_gate', action="store_true",
help="A gate controling the flow from generative model and copy model (see See et al.)")
# parser.add_argument('-coverage_attn', action="store_true",
# help='Train a coverage attention layer by Tu:2016:ACL.')
# parser.add_argument('-lambda_coverage', type=float, default=1,
# help='Lambda value for coverage by Tu:2016:ACL.')
# parser.add_argument('-context_gate', type=str, default=None,
# choices=['source', 'target', 'both'],
# help="""Type of context gate to use.
# Do not select for no context gate by Tu:2017:TACL.""")
# group.add_argument('-lambda_coverage', type=float, default=1,
# help='Lambda value for coverage.')
# Cascading model options
parser.add_argument('-cascading_model', action="store_true",
help='Train a copy model.')
def preprocess_opts(parser):
# Dictionary Options
parser.add_argument('-vocab_size', type=int, default=50000,
help="Size of the source vocabulary")
# for copy model
parser.add_argument('-max_unk_words', type=int, default=1000,
help="Maximum number of unknown words the model supports (mainly for masking in loss).")
parser.add_argument('-words_min_frequency', type=int, default=0)
# Length filter options
parser.add_argument('-max_src_seq_length', type=int, default=1000,
help="Maximum source sequence length")
parser.add_argument('-min_src_seq_length', type=int, default=20,
help="Minimum source sequence length")
parser.add_argument('-max_trg_seq_length', type=int, default=6,
help="Maximum target sequence length to keep.")
parser.add_argument('-min_trg_seq_length', type=int, default=None,
help="Minimun target sequence length to keep.")
# Truncation options
parser.add_argument('-src_seq_length_trunc', type=int, default=None,
help="Truncate source sequence length.")
parser.add_argument('-trg_seq_length_trunc', type=int, default=None,
help="Truncate target sequence length.")
parser.add_argument('-trg_num_trunc', type=int, default=4,
help="Truncate examples with many targets to maximize the utility of GPU memory.")
# Data processing options
parser.add_argument('-shuffle', type=int, default=1,
help="Shuffle data")
parser.add_argument('-lower', default=True,
action = 'store_true', help='lowercase data')
# Options most relevant to summarization
parser.add_argument('-dynamic_dict', default=True,
action='store_true', help="Create dynamic dictionaries (for copy)")
def train_opts(parser):
# Model loading/saving options
parser.add_argument('-data', required=True,
help="""Path prefix to the ".train.pt" and
".valid.pt" file path from preprocess.py""")
parser.add_argument('-vocab', required=True,
help="""Path prefix to the ".vocab.pt"
file path from preprocess.py""")
parser.add_argument('-save_model', default='model',
help="""Model filename (the model will be saved as
<save_model>_epochN_PPL.pt where PPL is the
validation perplexity""")
parser.add_argument('-train_from', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model's state_dict.""")
# GPU
parser.add_argument('-gpuid', default=[0], nargs='+', type=int,
help="Use CUDA on the listed devices.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
# Init options
parser.add_argument('-epochs', type=int, default=100,
help='Number of training epochs')
parser.add_argument('-start_epoch', type=int, default=1,
help='The epoch from which to start')
parser.add_argument('-param_init', type=float, default=0.1,
help="""Parameters are initialized over uniform distribution
with support (-param_init, param_init).
Use 0 to not use initialization""")
# Pretrained word vectors
parser.add_argument('-pre_word_vecs_enc',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the encoder side.
See README for specific formatting instructions.""")
parser.add_argument('-pre_word_vecs_dec',
help="""If a valid path is specified, then this will load
pretrained word embeddings on the decoder side.
See README for specific formatting instructions.""")
# Fixed word vectors
parser.add_argument('-fix_word_vecs_enc',
action='store_true',
help="Fix word embeddings on the encoder side.")
parser.add_argument('-fix_word_vecs_dec',
action='store_true',
help="Fix word embeddings on the encoder side.")
# Optimization options
parser.add_argument('-batch_size', type=int, default=128,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=4,
help='Number of workers for generating batches')
parser.add_argument('-optim', default='adam',
choices=['sgd', 'adagrad', 'adadelta', 'adam'],
help="""Optimization method.""")
parser.add_argument('-max_grad_norm', type=float, default=2,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to
max_grad_norm""")
parser.add_argument('-truncated_decoder', type=int, default=0,
help="""Truncated bptt.""")
parser.add_argument('-dropout', type=float, default=0.0,
help="Dropout probability; applied in LSTM stacks.")
# Learning options
parser.add_argument('-train_ml', action="store_true", default=True,
help='Train with Maximum Likelihood or not')
parser.add_argument('-train_rl', action="store_true", default=False,
help='Train with Reinforcement Learning or not')
parser.add_argument('-loss_scale', type=float, default=0.5,
help='A scaling factor to merge the loss of ML and RL parts: L_mixed = γ * L_rl + (1 − γ) * L_ml'
'The γ used by Metamind is 0.9984 in "A DEEP REINFORCED MODEL FOR ABSTRACTIVE SUMMARIZATION"'
'The α used by Google is 0.017 in "Google Translation": O_Mixed(θ) = α ∗ O_ML(θ) + O_RL(θ)'
)
parser.add_argument('-rl_method', default=0, type=int,
help="""0: ori, 1: running average as baseline""")
parser.add_argument('-rl_start_epoch', default=2, type=int,
help="""from which epoch rl training starts""")
# GPU
# Teacher Forcing and Scheduled Sampling
parser.add_argument('-must_teacher_forcing', action="store_true",
help="Apply must_teacher_forcing or not")
parser.add_argument('-teacher_forcing_ratio', type=float, default=0,
help="The ratio to apply teaching forcing ratio (default 0)")
parser.add_argument('-scheduled_sampling', action="store_true",
help="Apply scheduled sampling or not")
parser.add_argument('-scheduled_sampling_batches', type=int, default=10000,
help="The maximum number of batches to apply scheduled sampling")
# learning rate
parser.add_argument('-learning_rate', type=float, default=0.001,
help="""Starting learning rate.
Recommended settings: sgd = 1, adagrad = 0.1,
adadelta = 1, adam = 0.001""")
parser.add_argument('-learning_rate_rl', type=float, default=0.0001,
help="""Starting learning rate for Reinforcement Learning.
Recommended settings: sgd = 1, adagrad = 0.1,
adadelta = 1, adam = 0.001""")
parser.add_argument('-learning_rate_decay', type=float, default=0.5,
help="""If update_learning_rate, decay learning rate by
this much if (i) perplexity does not decrease on the
validation set or (ii) epoch has gone past
start_decay_at""")
parser.add_argument('-start_decay_at', type=int, default=8,
help="""Start decaying every epoch after and including this
epoch""")
parser.add_argument('-start_checkpoint_at', type=int, default=2,
help="""Start checkpointing every epoch after and including
this epoch""")
parser.add_argument('-decay_method', type=str, default="",
choices=['noam'], help="Use a custom decay rate.")
parser.add_argument('-warmup_steps', type=int, default=4000,
help="""Number of warmup steps for custom decay.""")
parser.add_argument('-run_valid_every', type=int, default=2000,
help="Run validation test at this interval (every run_valid_every batches)")
parser.add_argument('-early_stop_tolerance', type=int, default=10,
help="Stop training if it doesn't improve any more for serveral rounds of validation")
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="Save checkpoint at this interval.")
# output setting
parser.add_argument('-save_model_every', type=int, default=2000,
help="Save checkpoint at this interval.")
parser.add_argument('-report_every', type=int, default=100,
help="Print stats at this interval.")
parser.add_argument('-exp', type=str, default="kp20k",
help="Name of the experiment for logging.")
parser.add_argument('-exp_path', type=str, default="exp/%s.%s",
help="Path of experiment log/plot.")
parser.add_argument('-pred_path', type=str, default="pred/%s.%s",
help="Path of outputs of predictions.")
parser.add_argument('-model_path', type=str, default="model/%s.%s",
help="Path of checkpoints.")
# beam search setting
parser.add_argument('-beam_search_batch_example', type=int, default=8,
help='Maximum of examples for one batch, should be disabled for training')
parser.add_argument('-beam_search_batch_size', type=int, default=32,
help='Maximum batch size')
parser.add_argument('-beam_search_batch_workers', type=int, default=4,
help='Number of workers for generating batches')
parser.add_argument('-beam_size', type=int, default=32,
help='Beam size')
parser.add_argument('-max_sent_length', type=int, default=5,
help='Maximum sentence length.')
def predict_opts(parser):
parser.add_argument('-must_appear_in_src', action="store_true", default="True",
help='whether the predicted sequences must appear in the source text')
parser.add_argument('-report_score_names', type=str, nargs='+', default=['f_score@5_exact', 'f_score@5_soft', 'f_score@10_exact', 'f_score@10_soft'], help="""Default measure to report""")
parser.add_argument('-test_dataset_root_path', type=str, default="data/")
parser.add_argument('-test_dataset_names', type=str, nargs='+',
default=['inspec', 'nus', 'semeval', 'krapivin', 'duc', 'kp20k', 'stackexchange'],
help='Name of each test dataset, also the name of folder from which we load processed test dataset.')
# parser.add_argument('-num_oneword_seq', type=int, default=10000,
# help='Source sequence to decode (one line per sequence)')
# parser.add_argument('-report_score_names', type=str, nargs='+', default=['f_score@5#oneword=-1', 'f_score@10#oneword=-1', 'f_score@5#oneword=1', 'f_score@10#oneword=1'], help="""Default measure to report""")
# parser.add_argument('-save_data', required=True,
# help="Output file for the prepared test data")
# parser.add_argument('-model_path', required=True,
# help='Path to model .pt file')
# parser.add_argument('-vocab', required=True,
# help="""Path prefix to the ".vocab.pt"
# file path from preprocess.py""")
# parser.add_argument('-output', default='pred.txt',
# help="""Path to output the predictions (each line will
# be the decoded sequence""")
# parser.add_argument('-replace_unk', action="store_true",
# help="""Replace the generated UNK tokens with the
# source token that had highest attention weight. If
# phrase_table is provided, it will lookup the
# identified source token and give the corresponding
# target token. If it is not provided(or the identified
# source token does not exist in the table) then it
# will copy the source token""")
# parser.add_argument('-verbose', action="store_true",
# help='Print scores and predictions for each sentence')
# parser.add_argument('-attn_debug', action="store_true",
# help='Print best attn for each word')
# parser.add_argument('-dump_beam', type=str, default="",
# help='File to dump beam information to.')
# parser.add_argument('-n_best', type=int, default=1,
# help="""If verbose is set, will output the n_best
# decoded sentences""")
# GPU
# parser.add_argument('-gpuid', default=[0], nargs='+', type=int,
# help="Use CUDA on the listed devices.")
# parser.add_argument('-seed', type=int, default=9527,
# help="""Random seed used for the experiments
# reproducibility.""")