-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnnet.py
264 lines (197 loc) · 7.2 KB
/
nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch
class FirstConvolutionalNetwork(nn.Module):
def __init__(self):
super(FirstConvolutionalNetwork, self).__init__()
self.conv1 = nn.Conv1d(10, 16, kernel_size=3, stride=1, padding=1)
self.flattened_size = 176*4
self.fc1 = nn.Linear(self.flattened_size, 64)
self.fc2 = nn.Linear(64, 1)
self.fc3 = nn.Sigmoid()
def forward(self, x):
"""
Forward pass,
x shape is (batch_size, 3, 32, 32)
(color channel first)
in the comments, we omit the batch_size in the shape
"""
# shape : 3x32x32 -> 18x32x32
x = F.relu(self.conv1(x))
# 18x32x32 -> 18x16x16
# Check the output size
output_size = np.prod(x.size()[1:])
assert output_size == self.flattened_size,\
"self.flattened_size is invalid {} != {}".format(output_size, self.flattened_size)
# 18x16x16 -> 4608
x = x.view(-1, self.flattened_size)
# 4608 -> 64
x = F.relu(self.fc1(x))
# 64 -> 10
x = self.fc2(x)
x = self.fc3(x)
return x
class CNNTradPool1Conv1(nn.Module):
def __init__(self):
super(CNNTradPool1Conv1, self).__init__()
x = Variable(torch.zeros(1, 40, 101), volatile=True)
self.conv1 = nn.Conv1d(40, 64, kernel_size=8, stride=1)
self.pool1 = nn.MaxPool1d(2)
x = self.pool1(self.conv1(x))
conv_net_size = x.view(1, -1).size(1)
self.output = nn.Linear(conv_net_size, 1)
self.sig = nn.Sigmoid()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
"""
Forward pass,
x shape is (batch_size, 3, 32, 32)
(color channel first)
in the comments, we omit the batch_size in the shape
"""
x = F.relu(self.conv1(x))
x = self.dropout(x)
x = self.pool1(x)
x = x.view(x.size(0), -1)
x = self.output(x)
x = self.sig(x)
return x
class CNNTradPool1Conv2(nn.Module):
def __init__(self):
super(CNNTradPool1Conv2, self).__init__()
x = Variable(torch.zeros(1, 40, 101), volatile=True)
self.conv1 = nn.Conv1d(40, 64, kernel_size=8, stride=1)
self.pool1 = nn.MaxPool1d(2)
x = self.pool1(self.conv1(x))
conv_net_size = x.view(1, -1).size(1)
self.conv2 = nn.Conv1d(64, 64, kernel_size=4, stride=1)
self.pool2 = nn.MaxPool1d(1)
x = self.pool2(self.conv2(x))
conv_net_size = x.view(1, -1).size(1)
self.output = nn.Linear(conv_net_size, 1)
self.sig = nn.Sigmoid()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
"""
Forward pass,
x shape is (batch_size, 3, 32, 32)
(color channel first)
in the comments, we omit the batch_size in the shape
"""
x = F.relu(self.conv1(x))
x = self.dropout(x)
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.dropout(x)
x = self.pool2(x)
x = x.view(x.size(0), -1)
x = self.output(x)
x = self.sig(x)
return x
class CNNTradPool1Conv3(nn.Module):
def __init__(self):
super(CNNTradPool1Conv3, self).__init__()
x = Variable(torch.zeros(1, 40, 101), volatile=True)
self.conv1 = nn.Conv1d(40, 64, kernel_size=8, stride=1)
self.pool1 = nn.MaxPool1d(2)
x = self.pool1(self.conv1(x))
conv_net_size = x.view(1, -1).size(1)
self.conv2 = nn.Conv1d(64, 64, kernel_size=4, stride=1)
self.pool2 = nn.MaxPool1d(1)
x = self.pool2(self.conv2(x))
conv_net_size = x.view(1, -1).size(1)
self.conv3 = nn.Conv1d(64, 32, kernel_size=4, stride=1)
self.pool3 = nn.MaxPool1d(1)
x = self.pool3(self.conv3(x))
conv_net_size = x.view(1, -1).size(1)
self.output = nn.Linear(conv_net_size, 1)
self.sig = nn.Sigmoid()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
"""
Forward pass,
x shape is (batch_size, 3, 32, 32)
(color channel first)
in the comments, we omit the batch_size in the shape
"""
x = F.relu(self.conv1(x))
x = self.dropout(x)
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.dropout(x)
x = self.pool2(x)
x = F.relu(self.conv3(x))
x = self.dropout(x)
x = self.pool3(x)
x = x.view(x.size(0), -1)
x = self.output(x)
x = self.sig(x)
return x
class ConvolutionalNetwork(nn.Module):
def __init__(self):
super(ConvolutionalNetwork, self).__init__()
self.conv1 = nn.Conv1d(40, 32, kernel_size=3, stride=1, padding=1)
#### START CODE: ADD NEW LAYERS ####
# (do not forget to update `flattened_size`:
# the input size of the first fully connected layer self.fc1)
# self.conv2 = ...
self.conv2 = nn.Conv1d(32, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv1d(32, 16, kernel_size=3, stride=1, padding=1)
# Size of the output of the last convolution:
self.flattened_size = 3232
### END CODE ###
self.fc1 = nn.Linear(self.flattened_size, 64)
self.fc2 = nn.Linear(64, 1)
self.fc3 = nn.Sigmoid()
def forward(self, x):
"""
Forward pass,
x shape is (batch_size, 3, 32, 32)
(color channel first)
in the comments, we omit the batch_size in the shape
"""
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
#x = F.relu(self.conv3(x))
# Check the output size
output_size = np.prod(x.size()[1:])
assert output_size == self.flattened_size,\
"self.flattened_size is invalid {} != {}".format(output_size, self.flattened_size)
x = x.view(-1, self.flattened_size)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = self.fc3(x)
return x
class CNNTradPool2(nn.Module):
def __init__(self):
super(CNNTradPool2, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=(20, 8), stride=(1, 1))
self.pool1 = nn.MaxPool2d((2, 2))
x = Variable(torch.zeros(1, 1, 40, 101), volatile=True)
x = self.pool1(self.conv1(x))
self.conv2 = nn.Conv2d(64, 64, kernel_size=(10, 4), stride=(1, 1))
self.pool2 = nn.MaxPool2d((1, 1))
x = self.pool2(self.conv2(x))
conv_net_size = x.view(1, -1).size(1)
self.output = nn.Linear(conv_net_size, 1)
self.sig = nn.Sigmoid()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
"""
Forward pass,
x shape is (batch_size, 3, 32, 32)
(color channel first)
in the comments, we omit the batch_size in the shape
"""
x = F.relu(self.conv1(x.unsqueeze(1)))
x = self.dropout(x)
x = self.pool1(x)
x = F.relu(self.conv2(x))
x = self.dropout(x)
x = self.pool2(x)
x = x.view(x.size(0), -1)
x = self.output(x)
x = self.sig(x)
return x