From 51a10fad657218237992f4b22a156dbcaea1e544 Mon Sep 17 00:00:00 2001 From: Mddct Date: Tue, 28 Nov 2023 12:15:13 +0800 Subject: [PATCH] [text] add test unit parallel for bpe and whisper --- test/wenet/text/test_parallel.py | 42 ++++++++++++++++++++++++++++++++ 1 file changed, 42 insertions(+) create mode 100644 test/wenet/text/test_parallel.py diff --git a/test/wenet/text/test_parallel.py b/test/wenet/text/test_parallel.py new file mode 100644 index 000000000..28a0f37b2 --- /dev/null +++ b/test/wenet/text/test_parallel.py @@ -0,0 +1,42 @@ +from functools import partial +from multiprocessing import Pool +from wenet.text.base_tokenizer import BaseTokenizer + +from wenet.text.bpe_tokenizer import BpeTokenizer +from wenet.text.whisper_tokenizer import WhisperTokenizer + + +def consistency(tokenizer: BaseTokenizer, line: str) -> str: + return tokenizer.detokenize(tokenizer.tokenize(line)[1])[0] + + +def test_whisper_tokenzier_parallel(): + + inputs = ["it's ok", "wenet is simple", "test for new io"] + tokenizer = WhisperTokenizer(False) + + partial_tokenize = partial(consistency, tokenizer) + with Pool(processes=len(inputs)) as pool: + results = pool.map(partial_tokenize, inputs) + + inputs.sort() + results.sort() + + assert all(h == r for (h, r) in zip(results, inputs)) + + +def test_bpe_tokenzier_parallel(): + + symbol_table_path = "test/resources/librispeech.words.txt" + bpe_model = "test/resources/librispeech.train_960_unigram5000.bpemodel" + + inputs = ["WENR IS SIMPLE", "GOOD"] + tokenizer = BpeTokenizer(bpe_model, symbol_table_path) + partial_tokenize = partial(consistency, tokenizer) + with Pool(processes=len(inputs)) as pool: + results = pool.map(partial_tokenize, inputs) + + inputs.sort() + results.sort() + + assert all(h == r for (h, r) in zip(results, inputs))