|
| 1 | +import math |
| 2 | +from typing import Optional, Tuple, Union |
| 3 | +import torch |
| 4 | + |
| 5 | +from wenet.ssl.bestrq.mask import compute_mask_indices_v2 |
| 6 | +from wenet.ssl.wav2vec2.quantizer import Wav2vecGumbelVectorQuantizer |
| 7 | +from wenet.ssl.wav2vec2.wav2vec2_model import (_compute_contrastive_loss, |
| 8 | + _sample_negative_indices) |
| 9 | +from wenet.transformer.attention import RelPositionMultiHeadedAttention |
| 10 | + |
| 11 | +from wenet.transformer.encoder import ConformerEncoder, TransformerEncoder |
| 12 | +from wenet.transformer.encoder_layer import ConformerEncoderLayer |
| 13 | +from wenet.utils.mask import make_non_pad_mask |
| 14 | + |
| 15 | + |
| 16 | +class W2VBERTModel(torch.nn.Module): |
| 17 | + |
| 18 | + def __init__( |
| 19 | + self, |
| 20 | + encoder: Union[ConformerEncoder, TransformerEncoder], |
| 21 | + embedding_dim: int = 256, |
| 22 | + num_embeddings: int = 320, |
| 23 | + num_codebooks: int = 1, |
| 24 | + mask_prob: float = 0.065, |
| 25 | + mask_length: int = 10, |
| 26 | + min_masks: int = 2, |
| 27 | + num_negatives: int = 100, |
| 28 | + features_regularization_weight: float = 0.01, |
| 29 | + max_gumbel_temperature: float = 2.0, |
| 30 | + min_gumbel_temperature: float = 0.1, |
| 31 | + gumbel_temperature_decay: float = 0.999995, |
| 32 | + contrastive_logits_temperature: float = 0.1, |
| 33 | + diversity_weight: float = 0.0, |
| 34 | + bias: bool = True, |
| 35 | + contrastive_blocks: int = 6, |
| 36 | + masked_blocks: int = 6, |
| 37 | + contrastive_weight: float = 1.0, |
| 38 | + mlm_weight: float = 1.0, |
| 39 | + warmup_steps: int = 25000, |
| 40 | + ) -> None: |
| 41 | + """ Wrap encoder to train using W2V-BERT's style |
| 42 | +
|
| 43 | + Described in: |
| 44 | + https://arxiv.org/pdf/2108.06209v2.pdf |
| 45 | +
|
| 46 | + Args: |
| 47 | + encoder: wenet's encoder, |
| 48 | + only support conformer and transformer now |
| 49 | + embedding_dim: codebooks embedding dim |
| 50 | + num_embeddings: numbers of each codebook |
| 51 | + num_codebooks: numbers of codebooks i.e groups of codebook |
| 52 | + mask_prob: probs of mask |
| 53 | + mask_length: spans of masks |
| 54 | + min_masks: min masks for each audio |
| 55 | + num_negatives: numbers of negatives of each masks |
| 56 | + features_regularization_weight: l2 regularization weight |
| 57 | + max_gumbel_temperature: maximum temperature for gumbel softmax |
| 58 | + min_gumbel_temperature: minimum temperature for gumbel softmax |
| 59 | + gumbel_temperature_decay: |
| 60 | + decay of gumbel temperature during training |
| 61 | + contrastive_logits_temperature: |
| 62 | + the temperature in the contrastive loss. |
| 63 | + """ |
| 64 | + super().__init__() |
| 65 | + assert mask_prob > 0.0 |
| 66 | + assert (contrastive_blocks > 0 and masked_blocks > 0 and |
| 67 | + contrastive_blocks + masked_blocks == len(encoder.encoders)) |
| 68 | + self.contrastive_blocks = contrastive_blocks |
| 69 | + self.masked_blocks = masked_blocks |
| 70 | + |
| 71 | + self.mask_prob = mask_prob |
| 72 | + self.mask_length = mask_length |
| 73 | + self.min_masks = min_masks |
| 74 | + self.num_negatives = num_negatives |
| 75 | + |
| 76 | + self.features_regularization_weight = features_regularization_weight |
| 77 | + self.diversity_weight = diversity_weight |
| 78 | + |
| 79 | + self.contrastive_weight = contrastive_weight |
| 80 | + self.mlm_weight = mlm_weight |
| 81 | + self.warmup_steps = warmup_steps |
| 82 | + # encoder |
| 83 | + self.encoder = encoder |
| 84 | + |
| 85 | + # quantizer |
| 86 | + self.num_codebooks = num_codebooks |
| 87 | + self.quantizer = Wav2vecGumbelVectorQuantizer( |
| 88 | + self.encoder.output_size(), |
| 89 | + num_codebooks=num_codebooks, |
| 90 | + num_embeddings=num_embeddings, |
| 91 | + embedding_dim=embedding_dim, |
| 92 | + hard=False, |
| 93 | + ) |
| 94 | + self.max_gumbel_temp = max_gumbel_temperature |
| 95 | + self.min_gumbel_temp = min_gumbel_temperature |
| 96 | + self.gumbel_temp_decay = gumbel_temperature_decay |
| 97 | + |
| 98 | + self.num_codevectors_per_group = num_embeddings |
| 99 | + self.num_codevector_groups = num_codebooks |
| 100 | + |
| 101 | + self.contrastive_logits_temp = contrastive_logits_temperature |
| 102 | + |
| 103 | + # NOET(Mddct): mask_em is replaced by random value in Wav-BERT |
| 104 | + # self.mask_emb = torch.nn.parameter.Parameter( |
| 105 | + # torch.empty(self.encoder.output_size()).uniform_(), |
| 106 | + # requires_grad=True, |
| 107 | + # ) |
| 108 | + # TODO(Mddct): support causal or lookahead mask or keep consistent with |
| 109 | + # wenet dynamic chunk training |
| 110 | + |
| 111 | + # # n softmax |
| 112 | + self.encoder_top_n_out = torch.nn.parameter.Parameter( |
| 113 | + torch.empty(num_codebooks, self.encoder.output_size(), |
| 114 | + num_embeddings)) |
| 115 | + torch.nn.init.trunc_normal_(self.encoder_top_n_out, std=0.02) |
| 116 | + self.bias = bias |
| 117 | + if bias: |
| 118 | + self.encoder_top_n_out_bias = torch.nn.parameter.Parameter( |
| 119 | + torch.empty(num_codebooks, num_embeddings)) |
| 120 | + torch.nn.init.zeros_(self.encoder_top_n_out_bias) |
| 121 | + |
| 122 | + # reset parameter |
| 123 | + self.reset_encoder_parameter() |
| 124 | + |
| 125 | + def reset_encoder_parameter(self): |
| 126 | + |
| 127 | + def _reset_parameter(module: torch.nn.Module): |
| 128 | + if isinstance(module, torch.nn.Linear): |
| 129 | + torch.nn.init.trunc_normal_(module.weight.data, |
| 130 | + mean=0.0, |
| 131 | + std=0.02) |
| 132 | + if module.bias is not None: |
| 133 | + module.bias.data.zero_() |
| 134 | + elif isinstance(module, torch.nn.Conv1d): |
| 135 | + torch.nn.init.kaiming_normal_(module.weight) |
| 136 | + if module.bias is not None: |
| 137 | + k = math.sqrt(module.groups / |
| 138 | + (module.in_channels * module.kernel_size[0])) |
| 139 | + torch.nn.init.uniform_(module.bias, a=-k, b=k) |
| 140 | + elif isinstance(module, torch.Tensor): |
| 141 | + torch.nn.init.trunc_normal_(module) |
| 142 | + else: |
| 143 | + raise NotImplementedError("other module not support now") |
| 144 | + |
| 145 | + encoders = self.encoder.encoders |
| 146 | + for _, layer in enumerate(encoders): |
| 147 | + self_attn = layer.self_attn |
| 148 | + _reset_parameter(self_attn.linear_q) |
| 149 | + _reset_parameter(self_attn.linear_k) |
| 150 | + _reset_parameter(self_attn.linear_v) |
| 151 | + _reset_parameter(self_attn.linear_out) |
| 152 | + if isinstance(self_attn, RelPositionMultiHeadedAttention): |
| 153 | + _reset_parameter(self_attn.pos_bias_u) |
| 154 | + _reset_parameter(self_attn.pos_bias_v) |
| 155 | + if isinstance(layer, ConformerEncoderLayer): |
| 156 | + conv1, conv2 = (layer.conv_module.pointwise_conv1, |
| 157 | + layer.conv_module.depthwise_conv) |
| 158 | + _reset_parameter(conv1) |
| 159 | + _reset_parameter(conv2) |
| 160 | + |
| 161 | + @torch.jit.ignore(drop=True) |
| 162 | + def forward( |
| 163 | + self, |
| 164 | + xs: torch.Tensor, |
| 165 | + xs_lens: torch.Tensor, |
| 166 | + text: Optional[torch.Tensor] = None, |
| 167 | + text_length: Optional[torch.Tensor] = None, |
| 168 | + steps: Optional[int] = None, |
| 169 | + ): |
| 170 | + |
| 171 | + assert xs.size(0) == xs_lens.size(0) |
| 172 | + assert steps is not None |
| 173 | + |
| 174 | + # 1 forward subsampling |
| 175 | + # NOTE(Mddct): use subsampling as feature extraction |
| 176 | + xs, pos_emb, masks = self._forward_subsampling(xs, xs_lens) |
| 177 | + unmasked_xs = xs |
| 178 | + # 2 mask features |
| 179 | + masked_xs, masked_masks = self._apply_mask(xs, masks.squeeze(1)) |
| 180 | + # 3 forward encoder blocks |
| 181 | + contrastive_vec, mlm_vec, out_mask = self._forward_encoder_blocks( |
| 182 | + masked_xs, masks, pos_emb, masks) |
| 183 | + |
| 184 | + # 4 constrastive branch |
| 185 | + gumbel_temperature = max( |
| 186 | + self.max_gumbel_temp * self.gumbel_temp_decay**steps, |
| 187 | + self.min_gumbel_temp) |
| 188 | + |
| 189 | + quantized_features, codevector_perplexity, targets_ids = self.quantizer( |
| 190 | + unmasked_xs, masks.squeeze(1), gumbel_temperature) |
| 191 | + |
| 192 | + sampled_negative_indices = _sample_negative_indices( |
| 193 | + xs.size()[:-1], self.num_negatives, masked_masks.device, |
| 194 | + masked_masks) |
| 195 | + |
| 196 | + loss_contrastive = _compute_contrastive_loss( |
| 197 | + quantized_features, contrastive_vec, sampled_negative_indices, |
| 198 | + masked_masks, self.contrastive_logits_temp, self.num_negatives) |
| 199 | + loss = loss_contrastive |
| 200 | + |
| 201 | + # scale by sample size |
| 202 | + # make sure that diversity loss is multiplied by `sample_size` |
| 203 | + # since contrastive_loss is `sum`-reduced instead of averaged |
| 204 | + sample_size = masked_masks.sum() |
| 205 | + # higher codevector_perplexity leads to lower diversity loss |
| 206 | + loss_diversity: Optional[torch.Tensor] = None |
| 207 | + if self.diversity_weight != 0.0: |
| 208 | + loss_diversity = ( |
| 209 | + self.num_codevector_groups * self.num_codevectors_per_group - |
| 210 | + codevector_perplexity) / (self.num_codevectors_per_group * |
| 211 | + self.num_codevector_groups) |
| 212 | + loss_diversity = loss_diversity * sample_size |
| 213 | + loss = loss + self.diversity_weight * loss_diversity |
| 214 | + loss = loss / sample_size |
| 215 | + |
| 216 | + features_pen: Optional[torch.Tensor] = None |
| 217 | + if self.features_regularization_weight != 0.0: |
| 218 | + features_pen = xs.pow(2).mean() |
| 219 | + loss = loss + self.features_regularization_weight * features_pen |
| 220 | + |
| 221 | + # 5 maked lm branch |
| 222 | + out = mlm_vec.unsqueeze(1) |
| 223 | + top_n_out = self.encoder_top_n_out.unsqueeze( |
| 224 | + 0) # [1, num_codebooks, dim, num_embeddings] |
| 225 | + out = torch.matmul(out, |
| 226 | + top_n_out) # [B, num_codebooks, T', num_embeddings] |
| 227 | + if self.bias: |
| 228 | + out = out + self.encoder_top_n_out_bias.unsqueeze(0).unsqueeze(2) |
| 229 | + num_codes = masked_masks.sum() * self.num_codebooks |
| 230 | + loss_mlm = self._compute_mlm_loss(out, |
| 231 | + targets_ids, |
| 232 | + mask=out_mask.squeeze(1) * |
| 233 | + masked_masks) |
| 234 | + ids_corr = out.argmax(dim=-1, |
| 235 | + keepdim=False).transpose(1, 2) == targets_ids |
| 236 | + codes_acc = (ids_corr * masked_masks.unsqueeze(2)).sum() / num_codes |
| 237 | + # TODO(Mddct): support num codes used in batch, unique num codes |
| 238 | + # used in batch like bestrq |
| 239 | + |
| 240 | + # 6 final loss |
| 241 | + mlm_weight = (self.mlm_weight if steps >= self.warmup_steps else 0.1 + |
| 242 | + 0.9 * (steps / self.warmup_steps)) |
| 243 | + loss = self.contrastive_weight * loss + mlm_weight * loss_mlm |
| 244 | + return { |
| 245 | + "code_ppl": codevector_perplexity.detach(), |
| 246 | + "features_l2": features_pen, |
| 247 | + "codes_acc": codes_acc.detach(), |
| 248 | + "loss": loss, |
| 249 | + "loss_contrastive": loss_contrastive / sample_size, |
| 250 | + "loss_diversity": loss_diversity, |
| 251 | + "loss_mlm": loss_mlm, |
| 252 | + } |
| 253 | + |
| 254 | + def _apply_mask( |
| 255 | + self, xs: torch.Tensor, |
| 256 | + xs_masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
| 257 | + |
| 258 | + masks = compute_mask_indices_v2(xs.size()[:-1], |
| 259 | + ~xs_masks, |
| 260 | + self.mask_prob, |
| 261 | + self.mask_length, |
| 262 | + min_masks=self.min_masks, |
| 263 | + device=xs.device) |
| 264 | + masks_expand = masks.unsqueeze(-1) # [B, T, 1] |
| 265 | + |
| 266 | + mask_emb = torch.normal(mean=0, |
| 267 | + std=0.1, |
| 268 | + size=xs.size(), |
| 269 | + device=xs.device) |
| 270 | + xs = torch.where(masks_expand, mask_emb, xs) |
| 271 | + |
| 272 | + return xs, masks |
| 273 | + |
| 274 | + def _compute_mlm_loss(self, input: torch.Tensor, target: torch.Tensor, |
| 275 | + mask: torch.Tensor) -> torch.Tensor: |
| 276 | + log_probs = torch.log_softmax(input, dim=-1).transpose( |
| 277 | + 1, 2) # [B, T', num_codebooks, num_embeddings] |
| 278 | + |
| 279 | + per_example_n_loss = -log_probs.gather(3, target.unsqueeze(3)).squeeze( |
| 280 | + 3) # [B, T', num_codebooks] |
| 281 | + |
| 282 | + numerator = torch.sum(per_example_n_loss * mask.unsqueeze(2)) |
| 283 | + denominator = torch.sum(mask) + 1e-5 |
| 284 | + loss = numerator / (denominator * self.num_codebooks) |
| 285 | + return loss |
| 286 | + |
| 287 | + def _forward_subsampling( |
| 288 | + self, xs: torch.Tensor, xs_lens: torch.Tensor |
| 289 | + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
| 290 | + |
| 291 | + masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, T) |
| 292 | + if self.encoder.global_cmvn is not None: |
| 293 | + xs = self.encoder.global_cmvn(xs) |
| 294 | + xs, pos_emb, masks = self.encoder.embed(xs, masks) |
| 295 | + return xs, pos_emb, masks |
| 296 | + |
| 297 | + def _forward_encoder_blocks( |
| 298 | + self, xs: torch.Tensor, xs_masks: torch.Tensor, pos_emb: torch.Tensor, |
| 299 | + mask_pad: torch.Tensor |
| 300 | + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
| 301 | + |
| 302 | + masks = xs_masks |
| 303 | + |
| 304 | + xs: torch.Tensor |
| 305 | + # forward contrastive layers get context vector for Contrastive Loss |
| 306 | + for layer in self.encoder.encoders[:self.contrastive_blocks]: |
| 307 | + xs, masks, _, _ = layer(xs, xs_masks, pos_emb, mask_pad) |
| 308 | + contrastive_vec = xs |
| 309 | + |
| 310 | + for layer in self.encoder.encoders[self.contrastive_blocks:]: |
| 311 | + xs, masks, _, _ = layer(xs, xs_masks, pos_emb, mask_pad) |
| 312 | + masked_vec = xs |
| 313 | + |
| 314 | + if self.encoder.normalize_before: |
| 315 | + xs = self.encoder.after_norm(xs) |
| 316 | + masked_vec = xs |
| 317 | + # Here we assume the mask is not changed in encoder layers, so just |
| 318 | + # return the masks before encoder layers, and the masks will be used |
| 319 | + # for cross attention with decoder later |
| 320 | + return contrastive_vec, masked_vec, masks |
0 commit comments