-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrun_analysis.py
140 lines (119 loc) · 4.9 KB
/
run_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import getpass
import subprocess
import argparse
import os
current_user = getpass.getuser()
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--split', default='valid')
parser.add_argument('--model', choices=['pairwise', 'joint', 'autoregressive'])
parser.add_argument('--generation', action='store_true')
parser.add_argument('--codedir', default='./')
parser.add_argument('--datadir', default='./data')
parser.add_argument('--ckptdir', default='./ckpt')
parser.add_argument('--outdir', default='./output')
parser.add_argument('--stein-rencs', default=None, help='for OOD eval with joint')
parser.add_argument('--trench-rencs', default=None, help='for OOD eval with joint')
parser.add_argument('--modeltok2datatok', default=None, help='for combined proofwiki+stacks model')
parser.add_argument('--train-ds-names', nargs='+', default=['stacks', 'proofwiki', 'both'])
parser.add_argument('--eval-ds-names', nargs='+', default=['stacks', 'proofwiki', 'both', 'trench', 'stein'])
args = parser.parse_args()
codedir = args.codedir
ckptdir = args.ckptdir
datadir = args.datadir
outdir = args.outdir
env = os.environ.copy()
env['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
i = 1
train_ds_names = args.train_ds_names
eval_ds_names = args.eval_ds_names
for training_ds_name in train_ds_names:
for eval_ds_name in eval_ds_names:
print("=== (%d/%d)\n\ttraining_ds_name: %s\n\teval_ds_name: %s" % (
i, len(train_ds_names)*len(eval_ds_names), training_ds_name, eval_ds_name
))
# --- Setup the paths
ckptpath = os.path.join(ckptdir, '%s_%s.ckpt' % (args.model, training_ds_name))
datatype = 'pairwise' if args.model == 'pairwise' else 'sequence'
datapath = os.path.join(datadir, '%s_%s__bert-base-cased.pkl' % (datatype, eval_ds_name))
datapath_base = os.path.join(datadir, 'naturalproofs_%s.json' % eval_ds_name)
# ----
# Split
if eval_ds_name == 'trench' or eval_ds_name == 'stein':
split = 'test'
else:
split = args.split
# Name the evaluation
prefix = '%s__' % args.model
method = '%strain_%s__eval_%s__%s' % (prefix, training_ds_name, eval_ds_name, split)
output_dir = os.path.join(outdir, 'eval', method)
# --- Joint and Autoregressive
if args.model != 'pairwise':
cmd = [
'python', '-u', os.path.join(codedir, 'naturalproofs', 'encoder_decoder', 'predict.py'),
'--checkpoint-path', ckptpath,
'--datapath', datapath,
'--output-dir', output_dir,
'--split', split,
'--set-mode', '0',
'--rank-use-first', '1'
]
if args.model == 'joint':
cmd.extend([
'--parallel', '1',
])
if training_ds_name == 'both' and eval_ds_name != 'both':
cmd.extend([
'--modeltok2datatok', args.modeltok2datatok
])
if eval_ds_name == 'stein':
cmd.extend([
'--ood-encs', args.stein_rencs
])
if eval_ds_name == 'trench':
cmd.extend([
'--ood-encs', args.trench_rencs
])
if args.generation:
from copy import deepcopy
cmd_ = deepcopy(cmd)
cmd_.extend([
'--no-repeat-ngram-size', '0',
'--num-beams', '20',
])
print(' '.join(cmd_))
process = subprocess.Popen(cmd_, env=env)
process.wait()
else:
cmd.extend([
'--max-length', '5' if eval_ds_name == 'stacks' else '20',
'--num-beams', '1',
])
print(' '.join(cmd))
process = subprocess.Popen(cmd, env=env)
process.wait()
# --- Pairwise
else:
cmd = [
'python', '-u', os.path.join(codedir, 'naturalproofs', 'predict.py'),
'--method', method,
'--checkpoint-path', ckptpath,
'--datapath', datapath,
'--datapath-base', datapath_base,
'--output-dir', output_dir,
'--split', split
]
print(' '.join(cmd))
process = subprocess.Popen(cmd, env=env)
process.wait()
# Analyze
cmd = [
'python', '-u', os.path.join(codedir, 'naturalproofs', 'analyze.py'),
'--method', method,
'--eval-path', os.path.join(output_dir, '%s__eval.pkl' % method),
'--datapath-base', datapath_base,
]
print(' '.join(cmd))
process = subprocess.Popen(cmd, env=env)
process.wait()
i += 1