-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathbases_vector.hpp
724 lines (581 loc) · 21.4 KB
/
bases_vector.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/*
* /\ DISK++, a template library for DIscontinuous SKeletal
* /__\ methods.
* /_\/_\
* /\ /\ Matteo Cicuttin (C) 2016, 2017, 2018
* /__\ /__\ [email protected]
* /_\/_\/_\/_\ École Nationale des Ponts et Chaussées - CERMICS
*
* This file is copyright of the following authors:
* Matteo Cicuttin (C) 2016, 2017, 2018 [email protected]
* Karol Cascavita (C) 2018 [email protected]
* Nicolas Pignet (C) 2018 [email protected]
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* If you use this code or parts of it for scientific publications, you
* are required to cite it as following:
*
* Implementation of Discontinuous Skeletal methods on arbitrary-dimensional,
* polytopal meshes using generic programming.
* M. Cicuttin, D. A. Di Pietro, A. Ern.
* Journal of Computational and Applied Mathematics.
* DOI: 10.1016/j.cam.2017.09.017
*/
#pragma once
#include <vector>
#include "bases_scalar.hpp"
#include "common/eigen.hpp"
using namespace Eigen;
namespace disk
{
/* Compute the size of a vector basis of degree k in dimension d. */
size_t
vector_basis_size(size_t k, size_t sd, size_t vd)
{
size_t num = 1;
size_t den = 1;
for (size_t i = 1; i <= sd; i++)
{
num *= k + i;
den *= i;
}
return vd * (num / den);
}
/* Generic template for bases. */
template<typename MeshType, typename Element>
struct scaled_monomial_vector_basis
{
static_assert(sizeof(MeshType) == -1, "scaled_monomial_vector_basis: not suitable for the requested kind of mesh");
static_assert(sizeof(Element) == -1,
"scaled_monomial_vector_basis: not suitable for the requested kind of element");
};
/* Basis 'factory'. */
template<typename MeshType, typename ElementType>
auto
make_vector_monomial_basis(const MeshType& msh, const ElementType& elem, size_t degree)
{
return scaled_monomial_vector_basis<MeshType, ElementType>(msh, elem, degree);
}
/* Specialization for 3D meshes, cells */
template<template<typename, size_t, typename> class Mesh, typename T, typename Storage>
class scaled_monomial_vector_basis<Mesh<T, 3, Storage>, typename Mesh<T, 3, Storage>::cell>
{
public:
typedef Mesh<T, 3, Storage> mesh_type;
typedef typename mesh_type::coordinate_type scalar_type;
typedef typename mesh_type::cell cell_type;
typedef typename mesh_type::point_type point_type;
typedef Matrix<scalar_type, 3, 3> gradient_type;
typedef Matrix<scalar_type, Dynamic, 3> function_type;
typedef Matrix<scalar_type, Dynamic, 1> divergence_type;
private:
size_t basis_degree, basis_size;
typedef scaled_monomial_scalar_basis<mesh_type, cell_type> scalar_basis_type;
scalar_basis_type scalar_basis;
public:
scaled_monomial_vector_basis(const mesh_type& msh, const cell_type& cl, size_t degree) :
scalar_basis(msh, cl, degree)
{
basis_degree = degree;
basis_size = vector_basis_size(degree, 3, 3);
}
function_type
eval_functions(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 3);
auto phi = scalar_basis.eval_functions(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
ret(3 * i, 0) = phi(i);
ret(3 * i + 1, 1) = phi(i);
ret(3 * i + 2, 2) = phi(i);
}
return ret;
}
eigen_compatible_stdvector<gradient_type>
eval_gradients(const point_type& pt) const
{
eigen_compatible_stdvector<gradient_type> ret;
ret.reserve(basis_size);
function_type dphi = scalar_basis.eval_gradients(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
const Matrix<scalar_type, 1, 3> dphi_i = dphi.row(i);
gradient_type g;
g = gradient_type::Zero();
g.row(0) = dphi_i;
ret.push_back(g);
g = gradient_type::Zero();
g.row(1) = dphi_i;
ret.push_back(g);
g = gradient_type::Zero();
g.row(2) = dphi_i;
ret.push_back(g);
}
assert(ret.size() == basis_size);
return ret;
}
eigen_compatible_stdvector<gradient_type>
eval_sgradients(const point_type& pt) const
{
eigen_compatible_stdvector<gradient_type> ret;
ret.reserve(basis_size);
function_type dphi = scalar_basis.eval_gradients(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
const Matrix<scalar_type, 1, 3> dphi_i = dphi.row(i);
gradient_type g;
g = gradient_type::Zero();
g.row(0) = dphi_i;
ret.push_back((g + g.transpose()) / scalar_type(2));
g = gradient_type::Zero();
g.row(1) = dphi_i;
ret.push_back((g + g.transpose()) / scalar_type(2));
g = gradient_type::Zero();
g.row(2) = dphi_i;
ret.push_back((g + g.transpose()) / scalar_type(2));
}
assert(ret.size() == basis_size);
return ret;
}
function_type
eval_curls(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 3);
const function_type dphi = scalar_basis.eval_gradients(pt);
size_t j = 0;
for (size_t i = 0; i < scalar_basis.size(); i++)
{
const Matrix<scalar_type, 1, 3> dphi_i = dphi.row(i);
// row 1
ret(j, 0) = dphi_i(1);
ret(j, 1) = dphi_i(2);
j++;
// row 2
ret(j, 0) = -dphi_i(0);
ret(j, 2) = dphi_i(2);
j++;
// row 2
ret(j, 1) = -dphi_i(0);
ret(j, 2) = -dphi_i(1);
j++;
}
assert(j == basis_size);
return ret;
}
divergence_type
eval_divergences(const point_type& pt) const
{
divergence_type ret = divergence_type::Zero(basis_size);
const function_type dphi = scalar_basis.eval_gradients(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
ret(3 * i) = dphi(i, 0);
ret(3 * i + 1) = dphi(i, 1);
ret(3 * i + 2) = dphi(i, 2);
}
return ret;
}
size_t
size() const
{
return basis_size;
}
size_t
degree() const
{
return basis_degree;
}
};
/* Specialization for 3D meshes, faces */
template<template<typename, size_t, typename> class Mesh, typename T, typename Storage>
class scaled_monomial_vector_basis<Mesh<T, 3, Storage>, typename Mesh<T, 3, Storage>::face>
{
public:
typedef Mesh<T, 3, Storage> mesh_type;
typedef typename mesh_type::coordinate_type scalar_type;
typedef typename mesh_type::point_type point_type;
typedef typename mesh_type::face face_type;
typedef Matrix<scalar_type, Dynamic, 3> function_type;
private:
size_t basis_degree, basis_size;
typedef scaled_monomial_scalar_basis<mesh_type, face_type> scalar_basis_type;
scalar_basis_type scalar_basis;
public:
scaled_monomial_vector_basis(const mesh_type& msh, const face_type& fc, size_t degree) :
scalar_basis(msh, fc, degree)
{
basis_degree = degree;
basis_size = vector_basis_size(degree, 2, 3);
}
function_type
eval_functions(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 3);
const auto phi = scalar_basis.eval_functions(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
ret(3 * i, 0) = phi(i);
ret(3 * i + 1, 1) = phi(i);
ret(3 * i + 2, 2) = phi(i);
}
assert(3 * scalar_basis.size() == basis_size);
return ret;
}
size_t
size() const
{
return basis_size;
}
size_t
degree() const
{
return basis_degree;
}
};
/* Specialization for 2D meshes, cells */
template<template<typename, size_t, typename> class Mesh, typename T, typename Storage>
class scaled_monomial_vector_basis<Mesh<T, 2, Storage>, typename Mesh<T, 2, Storage>::cell>
{
public:
typedef Mesh<T, 2, Storage> mesh_type;
typedef typename mesh_type::coordinate_type scalar_type;
typedef typename mesh_type::cell cell_type;
typedef typename mesh_type::point_type point_type;
typedef Matrix<scalar_type, 2, 2> gradient_type;
typedef Matrix<scalar_type, Dynamic, 2> function_type;
typedef Matrix<scalar_type, Dynamic, 1> divergence_type;
private:
size_t basis_degree, basis_size;
typedef scaled_monomial_scalar_basis<mesh_type, cell_type> scalar_basis_type;
scalar_basis_type scalar_basis;
public:
scaled_monomial_vector_basis(const mesh_type& msh, const cell_type& cl, size_t degree) :
scalar_basis(msh, cl, degree)
{
basis_degree = degree;
basis_size = vector_basis_size(degree, 2, 2);
}
function_type
eval_functions(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 2);
const auto phi = scalar_basis.eval_functions(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
ret(2 * i, 0) = phi(i);
ret(2 * i + 1, 1) = phi(i);
}
return ret;
}
eigen_compatible_stdvector<gradient_type>
eval_gradients(const point_type& pt) const
{
eigen_compatible_stdvector<gradient_type> ret;
ret.reserve(basis_size);
const function_type dphi = scalar_basis.eval_gradients(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
const Matrix<scalar_type, 1, 2> dphi_i = dphi.row(i);
gradient_type g;
g = gradient_type::Zero();
g.row(0) = dphi_i;
ret.push_back(g);
g = gradient_type::Zero();
g.row(1) = dphi_i;
ret.push_back(g);
}
assert(ret.size() == basis_size);
return ret;
}
eigen_compatible_stdvector<gradient_type>
eval_sgradients(const point_type& pt) const
{
eigen_compatible_stdvector<gradient_type> ret;
ret.reserve(basis_size);
const function_type dphi = scalar_basis.eval_gradients(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
const Matrix<scalar_type, 1, 2> dphi_i = dphi.row(i);
gradient_type g;
g = gradient_type::Zero();
g.row(0) = dphi_i;
ret.push_back(0.5 * (g + g.transpose()));
g = gradient_type::Zero();
g.row(1) = dphi_i;
ret.push_back(0.5 * (g + g.transpose()));
}
assert(ret.size() == basis_size);
return ret;
}
Matrix<scalar_type, Dynamic, 1>
eval_curls(const point_type& pt) const
{
Matrix<scalar_type, Dynamic, 1> ret = Matrix<scalar_type, Dynamic, 1>::Zero(basis_size);
const function_type dphi = scalar_basis.eval_gradients(pt);
size_t j = 0;
for (size_t i = 0; i < scalar_basis.size(); i++)
{
Matrix<scalar_type, 1, 2> dphi_i = dphi.row(i);
ret(j++) = dphi_i(1);
ret(j++) = -dphi_i(0);
}
return ret;
}
divergence_type
eval_divergences(const point_type& pt) const
{
divergence_type ret = divergence_type::Zero(basis_size);
const function_type dphi = scalar_basis.eval_gradients(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
ret(2 * i) = dphi(i, 0);
ret(2 * i + 1) = dphi(i, 1);
}
return ret;
}
size_t
size() const
{
return basis_size;
}
size_t
degree() const
{
return basis_degree;
}
};
/* Specialization for 2D meshes, faces */
template<template<typename, size_t, typename> class Mesh, typename T, typename Storage>
class scaled_monomial_vector_basis<Mesh<T, 2, Storage>, typename Mesh<T, 2, Storage>::face>
{
public:
typedef Mesh<T, 2, Storage> mesh_type;
typedef typename mesh_type::coordinate_type scalar_type;
typedef typename mesh_type::point_type point_type;
typedef typename mesh_type::face face_type;
typedef Matrix<scalar_type, Dynamic, 2> function_type;
private:
size_t basis_degree, basis_size;
typedef scaled_monomial_scalar_basis<mesh_type, face_type> scalar_basis_type;
scalar_basis_type scalar_basis;
public:
scaled_monomial_vector_basis(const mesh_type& msh, const face_type& fc, size_t degree) :
scalar_basis(msh, fc, degree)
{
basis_degree = degree;
basis_size = vector_basis_size(degree, 1, 2);
}
function_type
eval_functions(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 2);
const auto phi = scalar_basis.eval_functions(pt);
for (size_t i = 0; i < scalar_basis.size(); i++)
{
ret(2 * i, 0) = phi(i);
ret(2 * i + 1, 1) = phi(i);
}
assert(2 * scalar_basis.size() == basis_size);
return ret;
}
size_t
size() const
{
return basis_size;
}
size_t
degree() const
{
return basis_degree;
}
};
///////////////////////////////////////////////////
//// Raviart-Thomas elements on simplicial ////////
///////////////////////////////////////////////////
/* Compute the size of a vector basis of degree k in dimension d. */
size_t
vector_basis_size_RT(const size_t k, const size_t sd, const size_t vd)
{
if(k == 0)
throw std::invalid_argument("Raviart-Thomas basis: degree has to be > 0");
if (sd == 3 && vd == 3)
{
return (k + 1) * (k + 2) * (k + 4) / 2;
}
else if (sd == 2 && vd == 2)
{
return (k + 1) * (k + 3);
}
throw std::invalid_argument("Raviart-Thomas basis: unknown case");
return 0;
}
// RT^{k}(T; R^d) = P^{k-1}(T;R^d) + x * P^{k-1,H}(T;R)
/* Generic template for RT bases. */
template<typename MeshType, typename Element>
struct scaled_monomial_vector_basis_RT
{
static_assert(sizeof(MeshType) == -1, "scaled_monomial_vector_basis_RT: not suitable for the requested kind of mesh");
static_assert(sizeof(Element) == -1,
"scaled_monomial_vector_basis_RT: not suitable for the requested kind of element");
};
/* RT Basis 'factory'. */
template<typename MeshType, typename ElementType>
auto
make_vector_monomial_basis_RT(const MeshType& msh, const ElementType& elem, const size_t degree)
{
return scaled_monomial_vector_basis_RT<MeshType, ElementType>(msh, elem, degree);
}
/* Specialization for 3D meshes, cells */
template<template<typename, size_t, typename> class Mesh, typename T, typename Storage>
class scaled_monomial_vector_basis_RT<Mesh<T, 3, Storage>, typename Mesh<T, 3, Storage>::cell>
{
public:
typedef Mesh<T, 3, Storage> mesh_type;
typedef typename mesh_type::coordinate_type scalar_type;
typedef typename mesh_type::cell cell_type;
typedef typename mesh_type::point_type point_type;
typedef Matrix<scalar_type, Dynamic, 3> function_type;
typedef Matrix<scalar_type, Dynamic, 1> divergence_type;
private:
size_t basis_degree, basis_size;
typedef scaled_monomial_scalar_basis<mesh_type, cell_type> scalar_basis_type;
scalar_basis_type scalar_basis;
typedef scaled_monomial_vector_basis<mesh_type, cell_type> vector_basis_type;
vector_basis_type vector_basis;
public:
scaled_monomial_vector_basis_RT(const mesh_type& msh, const cell_type& cl, const size_t degree) :
basis_degree(degree), basis_size(vector_basis_size_RT(degree, 3, 3)), scalar_basis(msh, cl, degree - 1),
vector_basis(msh, cl, degree - 1)
{
if (degree <= 0)
throw std::invalid_argument("Raviart-Thomas basis: degree has to be > 0");
if (points(msh, cl).size() != 4)
throw std::invalid_argument("Raviart-Thomas basis: available only on tetrahedron");
}
function_type
eval_functions(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 3);
ret.block(0,0, vector_basis.size(), 3) = vector_basis.eval_functions(pt);
const auto sphi = scalar_basis.eval_functions(pt);
size_t beg = 0;
if (basis_degree >= 2)
beg = scalar_basis_size(basis_degree - 2, 3);
const auto offset = vector_basis.size();
// compute x P^(k-1)_H (monomial of degree exactly k - 1)
for (size_t i = beg; i < scalar_basis.size(); i++)
{
ret(offset + i - beg, 0) = pt.x() * sphi(i);
ret(offset + i - beg, 1) = pt.y() * sphi(i);
ret(offset + i - beg, 2) = pt.z() * sphi(i);
}
return ret;
}
divergence_type
eval_divergences(const point_type& pt) const
{
divergence_type ret = divergence_type::Zero(basis_size);
ret.head(vector_basis.size()) = vector_basis.eval_divergences(pt);
const auto sphi = scalar_basis.eval_functions(pt);
const auto sdphi = scalar_basis.eval_gradients(pt);
size_t beg = 0;
if (basis_degree >= 2)
beg = scalar_basis_size(basis_degree - 2, 3);
const auto offset = vector_basis.size();
/// compute P^(k-1)_H + x.grad(P^(k-1)_H) (monomial of degree exactly k - 1)
for (size_t i = beg; i < scalar_basis.size(); i++)
{
ret(offset + i - beg) = 3 * sphi(i) + pt.x() * sdphi(i, 0) + pt.y() * sdphi(i, 1) + pt.z() * sdphi(i, 2);
}
return ret;
}
size_t
size() const
{
return basis_size;
}
size_t
degree() const
{
return basis_degree;
}
};
/* Specialization for 2D meshes, cells */
template<template<typename, size_t, typename> class Mesh, typename T, typename Storage>
class scaled_monomial_vector_basis_RT<Mesh<T, 2, Storage>, typename Mesh<T, 2, Storage>::cell>
{
public:
typedef Mesh<T, 2, Storage> mesh_type;
typedef typename mesh_type::coordinate_type scalar_type;
typedef typename mesh_type::cell cell_type;
typedef typename mesh_type::point_type point_type;
typedef Matrix<scalar_type, Dynamic, 2> function_type;
typedef Matrix<scalar_type, Dynamic, 1> divergence_type;
private:
size_t basis_degree, basis_size;
typedef scaled_monomial_scalar_basis<mesh_type, cell_type> scalar_basis_type;
scalar_basis_type scalar_basis;
typedef scaled_monomial_vector_basis<mesh_type, cell_type> vector_basis_type;
vector_basis_type vector_basis;
public:
scaled_monomial_vector_basis_RT(const mesh_type& msh, const cell_type& cl, const size_t degree) :
basis_degree(degree), basis_size(vector_basis_size_RT(degree, 2, 2)), scalar_basis(msh, cl, degree - 1),
vector_basis(msh, cl, degree - 1)
{
if (degree <= 0)
throw std::invalid_argument("Raviart-Thomas basis: degree has to be > 0");
if (points(msh, cl).size() != 3)
throw std::invalid_argument("Raviart-Thomas basis: available only on triangles");
}
function_type
eval_functions(const point_type& pt) const
{
function_type ret = function_type::Zero(basis_size, 2);
ret.block(0, 0, vector_basis.size(), 2) = vector_basis.eval_functions(pt);
const auto sphi = scalar_basis.eval_functions(pt);
size_t beg = 0;
if (basis_degree >= 2)
beg = scalar_basis_size(basis_degree - 2, 2);
const auto offset = vector_basis.size();
// compute x P^(k-1)_H (monomial of degree exactly k - 1)
for (size_t i = beg; i < scalar_basis.size(); i++)
{
ret(offset + i - beg, 0) = pt.x() * sphi(i);
ret(offset + i - beg, 1) = pt.y() * sphi(i);
}
return ret;
}
divergence_type
eval_divergences(const point_type& pt) const
{
divergence_type ret = divergence_type::Zero(basis_size);
ret.head(vector_basis.size()) = vector_basis.eval_divergences(pt);
const auto sphi = scalar_basis.eval_functions(pt);
const auto sdphi = scalar_basis.eval_gradients(pt);
size_t beg = 0;
if (basis_degree >= 2)
beg = scalar_basis_size(basis_degree - 2, 2);
const auto offset = vector_basis.size();
/// compute P^(k-1)_H + x.grad(P^(k-1)_H) (monomial of degree exactly k - 1)
for (size_t i = beg; i < scalar_basis.size(); i++)
{
ret(offset + i - beg) = 2 * sphi(i) + pt.x() * sdphi(i, 0) + pt.y() * sdphi(i, 1);
}
return ret;
}
size_t
size() const
{
return basis_size;
}
size_t
degree() const
{
return basis_degree;
}
};
}