-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_multitask.py
264 lines (205 loc) · 9.45 KB
/
main_multitask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import os
import time
import random
import numpy as np
import logging
import sys
import json
import math
from tqdm import tqdm, trange
import pickle
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, get_linear_schedule_with_warmup, get_constant_schedule_with_warmup
from utils.args import get_args
from utils.logging import set_logger
from utils.data_helper_mt import DataHelper, DataLoader, DataHelper_Test
from prediction import generate_to_file, evaluate_generation
from models.gpt2.modeling_gpt2 import GPT2LMHeadModel
torch.set_num_threads(8)
# for REPRODUCIBILITY
seed = 0
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
logger = logging.getLogger(__name__)
def main():
args = get_args()
task_list = args.dataset.split('_')
if 'demon' in args.method:
task_list = [task + '_demon' for task in task_list]
# ----------------------------------------------------- #
# checkpoint directory
model_ckpt = os.path.join(args.save_dir, 'model.ckpt')
# log file
log_path = os.path.join(args.save_dir, 'train.log')
set_logger(logger, log_path)
logger.info('args: {}'.format(args))
writer = SummaryWriter(log_dir=args.save_dir)
# ----------------------------------------------------- #
# setup transformer and model
tokenizer = AutoTokenizer.from_pretrained(args.model_type, cache_dir='../cache')
print('Original vocab size: {}'.format(len(tokenizer)))
rel2text = {}
for task in task_list:
with open('./data/{}/rel2text.json'.format(task), 'rb') as handle:
rel2text[task] = json.load(handle)["mapping"]
config = AutoConfig.from_pretrained(args.model_type, cache_dir='../cache/')
config.method = args.method
config.bottleneck_size = args.bottleneck_size
config.perturb_layer = args.perturb_layer
config.device = args.device
model = GPT2LMHeadModel(config)
model_dict = model.state_dict()
ptlm_ckpt = './checkpoints/pretrained_model/{}LMHead.ckpt'.format(args.model_type)
pretrain_weight = torch.load(ptlm_ckpt)
model_dict.update(pretrain_weight)
# ----------------------------------------------------- #
model.load_state_dict(model_dict)
model.to(args.device)
# ----------------------------------------------------- #
# Freeze ptlm weights
if args.fix_lm:
for name, param in model.transformer.named_parameters():
if not 'perturb' in name:
param.requires_grad = False
for param in model.lm_head.parameters():
param.requires_grad = False
# ----------------------------------------------------- #
# load data & init model and optimizer
logger.info('Loading data & model')
datahelper = DataHelper(task_list, rel2text, tokenizer, args.max_seq_length, args.n_sample, seed)
train_dataloader_dict = {task: DataLoader(datahelper.trainset[task]) for task in task_list}
dev_dataloader_dict = {task: DataLoader(datahelper.devset[task]) for task in task_list}
min_data_size = min([dataloader.data_size for task, dataloader in train_dataloader_dict.items()])
num_batch_per_epoch = math.ceil(min_data_size / args.batch_size)
logger.info('Num of steps: {}'.format(num_batch_per_epoch))
# ----------------------------------------------------- #
# setup optimization
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if
p.requires_grad and not any(nd in n for nd in no_decay) and not 'perturb' in n],
"lr": args.learning_rate_ptlm,
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if
p.requires_grad and any(nd in n for nd in no_decay) and not 'perturb' in n],
"lr": args.learning_rate_ptlm,
"weight_decay": 0.0
},
{
"params": [p for n, p in model.named_parameters() if
p.requires_grad and not any(nd in n for nd in no_decay) and 'perturb' in n],
"lr": args.learning_rate_adaptor,
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if
p.requires_grad and any(nd in n for nd in no_decay) and 'perturb' in n],
"lr": args.learning_rate_adaptor,
"weight_decay": 0.0
},
]
for n, p in model.named_parameters():
if p.requires_grad:
print(n)
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, eps=args.adam_epsilon)
if args.schedule == 'linear':
t_total = num_batch_per_epoch // args.grad_step * (args.num_epoch)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
else:
scheduler = get_constant_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps)
# ----------------------------------------------------- #
# training
best_dev_perplexity = 1e19
final_test_perplexity = 0
step_nogress = 0
global_step = 0
optimizer.zero_grad()
for epoch in trange(int(args.num_epoch), desc="Epoch"):
train_loss_dict = {task: 0.0 for task in task_list}
num_steps = 0
model.train()
for step in tqdm(range(num_batch_per_epoch), desc="Train Iteration at Epoch {}".format(epoch)):
for task in task_list:
input_ids, labels = train_dataloader_dict[task].get_batch(args.batch_size, args.device)
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
writer.add_scalar('{}/ce_loss'.format(task), loss.item(), global_step)
writer.add_scalar('{}/loss'.format(task), loss.item(), global_step)
train_loss_dict[task] += loss.item()
loss /= args.grad_step
loss.backward()
if (global_step + 1) % args.grad_step == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
optimizer.zero_grad()
num_steps += 1
global_step += 1
for task in task_list:
train_loss_dict[task] /= num_steps
log = 'Epoch: {:03d} {} Train loss: {:.4f}'
logger.info(log.format(epoch, task, train_loss_dict[task]))
current_dev_perplexity = 0.
for task in task_list:
dev_result = evaluation(task, dev_dataloader_dict[task], model, args)
log = 'Epoch: {:03d}, {} dev loss {:.4f}, perplexity {:.4f}'
logger.info(log.format(epoch, task, dev_result["loss"], dev_result["perplexity"]))
current_dev_perplexity += dev_result["perplexity"]
current_dev_perplexity /= len(task_list)
if current_dev_perplexity < best_dev_perplexity:
best_dev_perplexity = current_dev_perplexity
step_nogress = 0
save_dict = {n: model.state_dict()[n] for n, p in model.named_parameters() if p.requires_grad}
torch.save({'config': config, 'state_dict': save_dict, 'tokenizer': tokenizer}, model_ckpt)
else:
step_nogress += 1
logger.info("saving model checkpoint at epoch {:03d} with ppl {:.4f}".format(epoch, current_dev_perplexity))
if step_nogress > 1:
break
# ----------------------------------------------------- #
model_dict.update(torch.load(model_ckpt, map_location='cpu')['state_dict'])
model.load_state_dict(model_dict)
task_result = {}
datahelper = DataHelper_Test(task_list, rel2text, tokenizer, args.max_seq_length)
test_dataloader_dict = {task: DataLoader(datahelper.testset[task]) for task in task_list}
for task in task_list:
print(task)
test_result = evaluation(task, test_dataloader_dict[task], model, args)
input_path = './data/{}/test.txt'.format(task)
output_path = os.path.join(args.save_dir, 'prediction_{}.txt'.format(task))
generate_to_file(input_path, output_path, tokenizer, rel2text[task], model, args)
test_result.update(evaluate_generation(input_path, output_path))
task_result[task] = test_result
print('=' * 50)
evaluation_path = os.path.join(args.save_dir, 'evaluation_all.json')
with open(evaluation_path, 'w') as fw:
json.dump(task_result, fw, indent=4)
def evaluation(task, dataloader, model, args):
data_iterator = tqdm(dataloader.sequential_iterate(args.batch_size, args.device), desc="Eval Iteration {}".format(task))
model.eval()
loss_sum = 0.
ppl_sum = 0.
tokens_sum = 0.
for step, batch in enumerate(data_iterator):
input_ids, labels = batch
with torch.no_grad():
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
num_tokens = (labels != -100).sum().item()
tokens_sum += num_tokens
ppl_sum += loss.item() * num_tokens
loss_sum += loss.item()
loss_sum /= (step + 1)
ppl_sum = math.exp(ppl_sum / tokens_sum)
return OrderedDict({"loss": loss_sum, "perplexity": ppl_sum})
if __name__ == '__main__':
main()