forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
62 lines (52 loc) · 1.78 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from seq2seq_attn import Seq2SeqAttnInferModel
from args import parse_args
from data import create_infer_loader
def main():
args = parse_args()
_, src_vocab_size, tgt_vocab_size, bos_id, eos_id = create_infer_loader(
args)
# Build model and load trained parameters
model = Seq2SeqAttnInferModel(
src_vocab_size,
tgt_vocab_size,
args.hidden_size,
args.hidden_size,
args.num_layers,
args.dropout,
bos_id=bos_id,
eos_id=eos_id,
beam_size=args.beam_size,
max_out_len=256)
# Load the trained model
model.set_state_dict(paddle.load(args.init_from_ckpt))
# Wwitch to eval model
model.eval()
# Convert to static graph with specific input description
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None, None], dtype="int64"), # src
paddle.static.InputSpec(
shape=[None], dtype="int64") # src length
])
# Save converted static graph model
paddle.jit.save(model, args.export_path)
if __name__ == "__main__":
main()