-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
1124 lines (985 loc) · 36.3 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* SPI 3 Wire usage demo with BMX160 sensor.
*
* sensor: https://wiki.dfrobot.com/BMX160_9_Axis_Sensor_Module_SKU_SEN0373
*
* The demo runs multiple times 3-Wire SPI test with different parameters and print result table.
*
* Single test includes the following steps:
* 1. SPI object creation
* 2. minimal BMX160 configuration (some commands should be send via SPI)
* 3. single byte read/write test. It includes the following steps, that are repeated 64 times:
* 1. start transaction (CS = 0)
* 2. send register address (1 byte)
* 3. send value (1 byte)
* 4. finish transaction (CS = 1)
* 5. start transaction (CS = 0)
* 6. send register address with read bit flag (1 byte)
* 7. receive value (1 byte)
* 8. finish transaction (CS = 1)
* 9. do the following checks:
* - check that sent and received values are same
* - check that SPI method calls don't return errors
* - check the SPI generated 32 clock cycles
* 4. burst read/write test. It includes the following steps, that are repeated 64 times:
* 1. start transaction (CS = 0)
* 2. send register address (1 byte)
* 3. send value (6 bytes)
* 4. finish transaction (CS = 1)
* 5. start transaction (CS = 0)
* 6. send register address with read bit flag (1 byte)
* 7. receive value (6 bytes)
* 8. finish transaction (CS = 1)
* 9. do the following checks:
* - check that sent and received values are same
* - check that SPI method calls don't return errors
* - check the SPI generated 112 clock cycles
* 5. destroy SPI object
*
* Test parameters:
* - target SPI frequency
* - API type:
* - "synchronous" - SPI::write methods are used for communication
* - "asynchronous" - SPI::transfer method is used for communication
*
* Result table has the following columns with information about each test:
* 1. "target SPI frequency" - SPI frequency that is set with SPI::frequency method
* 2. "actual SPI frequency" - actual SPI frequency (it may differ from target one)
* 3. "API type" - API type:
* - "synchronous" - SPI::write methods are used for communication
* - "asynchronous" - SPI::transfer method is used for communication
* 4. "test result". It's "OK" if:
* - sensor is initialized without errors
* - single byte read/write test finished without errors
* - burst read/write test finished without errors
* 5. "init error" - sensor initialization error
* - 0 - any SPI method calls that are used to perform basic BMX160 configuration don't return any error code
* - non-zero - some SPI method calls that are used to perform basic BMX160 configuration returns error code
* 6. "single r/w result" - single byte read/write test result. It's "OK" if:
* - SPI api calls don't return any error codes
* - sent and received values coincide
* - SPI generated correct number of clock cycles
* 7. "single r/w data error":
* - "no" - sent and received values coincide
* - "yes" - sent and received values are different
* 8. "single r/w clock error":
* - "no" - SPI generated correct number of clock cycles
* - "yes" - SPI generated wrong number of clock cycles
* 9. "burst r/w result" - burst byte read/write test result. It's "OK" if:
* - SPI api calls don't return any error codes
* - sent and received values coincide
* - SPI generated correct number of clock cycles
* 10. "burst r/w data error":
* - "no" - sent and received values coincide
* - "yes" - sent and received values are different
* 11. "burst r/w clock error":
* - "no" - SPI generated correct number of clock cycles
* - "yes" - SPI generated wrong number of clock cycles
*/
#include <cstdarg>
#include <cstring>
#include "mbed.h"
#include "pwmout_api.h"
//----------------------------------------------------------------------------//
// Hardware pins
//----------------------------------------------------------------------------//
// SPI MOSI pin
#define BMX160_SPI_MOSI PB_5
// SPI MISO pin
// This pin should be connected to BMX160_SPI_MOSI to use 4-wire mode for 3-wire spi device.
// If it isn't used, then NC should be set.
#define BMX160_SPI_MISO NC
// SPI CLK pin
#define BMX160_SPI_SCK PB_3
// SPI SSEL pin
#define BMX160_SPI_CSB PB_6
// SPI CLK counter pint
#define BMX160_SPI_CLK_COUNTER PA_0
//----------------------------------------------------------------------------//
// Helper SPI interface that able to print actual frequency
//----------------------------------------------------------------------------//
extern "C" {
extern int spi_get_clock_freq(spi_t *obj);
}
/**
* Convert SPI_BAUDRATEPRESCALER_X constant into prescaler rank.
*/
static uint8_t spi_get_baudrate_prescaler_rank(uint32_t value)
{
switch (value) {
case SPI_BAUDRATEPRESCALER_2:
return 0;
case SPI_BAUDRATEPRESCALER_4:
return 1;
case SPI_BAUDRATEPRESCALER_8:
return 2;
case SPI_BAUDRATEPRESCALER_16:
return 3;
case SPI_BAUDRATEPRESCALER_32:
return 4;
case SPI_BAUDRATEPRESCALER_64:
return 5;
case SPI_BAUDRATEPRESCALER_128:
return 6;
case SPI_BAUDRATEPRESCALER_256:
return 7;
default:
return 0xFF;
}
}
class SPIExt : public SPI {
public:
SPIExt(PinName mosi, PinName miso, PinName sclk)
: SPI(mosi, miso, sclk) {}
/**
* Get actual SPI frequency;
*/
int get_real_frequency()
{
spi_t *obj = &_peripheral->spi;
SPI_HandleTypeDef *handle = &obj->spi.handle;
int base_freq = spi_get_clock_freq(obj);
return base_freq >> (spi_get_baudrate_prescaler_rank(handle->Init.BaudRatePrescaler) + 1);
}
};
//----------------------------------------------------------------------------//
// Helper PWM base class to count signal edges using STM32 ETR TIM feature.
//----------------------------------------------------------------------------//
/**
* TIM ETR pinmap.
*
* It's difficult to create TIM ETR input map for all MCUs, so we cover only most common cases.
* Note: this pinmap doesn't cover all cases and may not work with some boards/mcus.
*/
static const PinMap PinMap_ETR[] = {
#if defined(TARGET_STM32F0) || defined(TARGET_STM32G0)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
{PA_5, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
{PA_12, PWM_1, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM1)},
#elif defined (TARGET_STM32F1)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)},
{PA_12, PWM_1, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)},
{PA_15, PWM_2, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 8)},
#elif defined(TARGET_STM32F2) || defined(TARGET_STM32F2) || defined(TARGET_STM32F4) || defined(TARGET_STM32F7) || defined(TARGET_STM32H7)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF1_TIM2)},
{PA_5, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF1_TIM2)},
{PA_12, PWM_1, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF1_TIM1)},
{PA_15, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF1_TIM2)},
#elif defined(TARGET_STM32G4)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF14_TIM2)},
{PA_5, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
{PA_12, PWM_1, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF11_TIM1)},
{PA_15, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF14_TIM2)},
{PB_3, PWM_3, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF10_TIM3)},
#elif defined(TARGET_STM32L0)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF5_TIM2)},
{PA_5, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
#elif defined(TARGET_STM32L4) || defined(TARGET_STM32L5)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF14_TIM2)},
{PA_5, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
{PA_12, PWM_1, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF1_TIM1)},
{PA_15, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
#elif defined(TARGET_STM32WB) || defined(TARGET_STM32WL)
{PA_0, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF14_TIM2)},
{PA_5, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
{PA_12, PWM_1, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF1_TIM1)},
{PA_15, PWM_2, STM_PIN_DATA(STM_MODE_AF_OD, GPIO_NOPULL, GPIO_AF2_TIM2)},
#else
#error unsupported STM32 target for EdgeCounter
#endif
{NC, NC, 0}
};
/**
* Pulse counter.
*
* Unlike common interrupt base implementation it doesn't consume CPU time and
* it able to work with higher frequencies.
*/
class PulseCounter : NonCopyable<PulseCounter> {
protected:
PinName _pin;
PWMName _pwm;
static PWMName _get_timer(PinName pin)
{
return (PWMName)pinmap_peripheral(pin, PinMap_ETR);
}
static void _enable_tim_clock(PWMName pwm)
{
// Enable TIM clock
switch (pwm) {
#if defined(TIM1_BASE)
case PWM_1:
__HAL_RCC_TIM1_CLK_ENABLE();
break;
#endif
#if defined(TIM2_BASE)
case PWM_2:
__HAL_RCC_TIM2_CLK_ENABLE();
break;
#endif
#if defined(TIM3_BASE)
case PWM_3:
__HAL_RCC_TIM3_CLK_ENABLE();
break;
#endif
#if defined(TIM4_BASE)
case PWM_4:
__HAL_RCC_TIM4_CLK_ENABLE();
break;
#endif
default:
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_PINMAP_INVALID),
"Specified timer isn't supported by EdgeCounter");
}
}
static int _get_encoder_function(PinName pin, PinMode mode)
{
int function = (int)pinmap_find_function(pin, PinMap_ETR);
if (function == NC) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_PINMAP_INVALID),
"Invalid TIM ETR pin for EdgeCounter");
}
// update pull up/down method
int hal_mode;
switch (mode) {
case PullUp:
case OpenDrainPullUp:
hal_mode = GPIO_PULLUP;
break;
case PullDown:
case OpenDrainPullDown:
hal_mode = GPIO_PULLDOWN;
break;
default:
hal_mode = GPIO_NOPULL;
}
function &= ~STM_PIN_PUPD_BITS;
function |= (hal_mode & STM_PIN_PUPD_MASK) << STM_PIN_PUPD_SHIFT;
return function;
}
public:
enum PulseEdge {
RisingEdge = 0,
FallingEdge = 1
};
/**
* Constructor.
*
* @param pin PulseCounter pin to connect to
* @param edge signal edge to count pulse
*/
PulseCounter(PinName pin, PulseEdge edge = FallingEdge, PinMode mode = PullNone)
: _pin(pin)
{
// find target timer
_pwm = _get_timer(pin);
// get pwm function (with channel information)
int function = _get_encoder_function(pin, mode);
sleep_manager_lock_deep_sleep();
// enable timer clock
_enable_tim_clock(_pwm);
// Configure TIM ETR mode
TIM_HandleTypeDef htim = {};
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
htim.Instance = (TIM_TypeDef *)(_pwm);
htim.Init.Prescaler = 0;
htim.Init.CounterMode = TIM_COUNTERMODE_UP;
htim.Init.Period = 0xFFFF'FFFF;
htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim.Init.RepetitionCounter = 0;
htim.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim) != HAL_OK) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_INITIALIZATION_FAILED),
"Fail to configure timer for EdgeCounter");
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_ETRMODE2;
sClockSourceConfig.ClockPolarity =
edge == RisingEdge ? TIM_CLOCKPOLARITY_NONINVERTED : TIM_CLOCKPOLARITY_INVERTED;
sClockSourceConfig.ClockPrescaler = TIM_CLOCKPRESCALER_DIV1;
sClockSourceConfig.ClockFilter = 0;
if (HAL_TIM_ConfigClockSource(&htim, &sClockSourceConfig) != HAL_OK) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_INITIALIZATION_FAILED),
"Fail to configure clock source for EdgeCounter");
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim, &sMasterConfig) != HAL_OK) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_INITIALIZATION_FAILED),
"Fail to configure master mode for EdgeCounter");
}
// enable pin
pin_function(pin, function);
// run timer
if (HAL_TIM_Base_Start(&htim) != HAL_OK) {
MBED_ERROR(MBED_MAKE_ERROR(MBED_MODULE_DRIVER, MBED_ERROR_CODE_INITIALIZATION_FAILED),
"Fail to start timer for EdgeCounter");
}
}
~PulseCounter()
{
TIM_HandleTypeDef htim = {};
htim.Instance = (TIM_TypeDef *)(_pwm);
// stop timer
HAL_TIM_Base_Stop(&htim);
// configure GPIO back to reset value
pin_function(_pin, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
sleep_manager_unlock_deep_sleep();
}
void reset()
{
auto tim = (TIM_TypeDef *)(_pwm);
LL_TIM_SetCounter(tim, 0);
}
int get_count()
{
auto tim = (TIM_TypeDef *)(_pwm);
return (int)LL_TIM_GetCounter(tim);
}
};
//----------------------------------------------------------------------------//
// BMX160 register API
//----------------------------------------------------------------------------//
enum class BMX160Register : uint8_t {
CHIP_ID = 0x00,
ERROR_REG = 0x02,
// power status
PMU_STATUS = 0x03,
// data register
DATA_MAG_X_L = 0x04,
DATA_MAG_X_H = 0x05,
DATA_MAG_Y_L = 0x06,
DATA_MAG_Y_H = 0x07,
DATA_MAG_Z_L = 0x08,
DATA_MAG_Z_H = 0x09,
DATA_RHALL_L = 0x0A,
DATA_RHALL_H = 0x0B,
DATA_GYRO_X_L = 0x0C,
DATA_GYRO_X_H = 0x0D,
DATA_GYRO_Y_L = 0x0E,
DATA_GYRO_Y_H = 0x0F,
DATA_GYRO_Z_L = 0x10,
DATA_GYRO_Z_H = 0x11,
DATA_ACCEL_X_L = 0x12,
DATA_ACCEL_X_H = 0x13,
DATA_ACCEL_Y_L = 0x14,
DATA_ACCEL_Y_H = 0x15,
DATA_ACCEL_Z_L = 0x16,
DATA_ACCEL_Z_H = 0x17,
SENSOR_TIME_0 = 0x18,
SENSOR_TIME_1 = 0x19,
SENSOR_TIME_2 = 0x1A,
// status registers
STATUS = 0x1B,
INT_STATUS_0 = 0x1C,
INT_STATUS_1 = 0x1D,
INT_STATUS_2 = 0x1E,
INT_STATUS_4 = 0x1F,
// temperature
TEMPERATURE_L = 0x20,
TEMPERATURE_H = 0x21,
// FIFO data
FIFO_LENGTH_L = 0x22,
FIFO_LENGTH_H = 0x22,
FIFO_DATA = 0x24,
// sensor configuration
ACCEL_CONFIG = 0x40,
ACCEL_RANGE = 0x41,
GYRO_CONFIG = 0x42,
GYRO_RANGE = 0x43,
MAGN_CONFIG = 0x44,
// fifo configuration
FIFO_DOWN = 0x45,
FIFO_CONFIG_0 = 0x46,
FIFO_CONFIG_1 = 0x47,
// manual magnetometer access registers
MAG_IF_0 = 0x4C,
MAG_IF_1 = 0x4D,
MAG_IF_2 = 0x4E,
MAG_IF_3 = 0x4F,
// interrupt configuration registers
INT_EN_0 = 0x50,
INT_EN_1 = 0x51,
INT_EN_2 = 0x52,
INT_OUT_CTRL = 0x53,
INT_LATCH = 0x54,
INT_MAP_0 = 0x55,
INT_MAP_1 = 0x56,
INT_MAP_2 = 0x57,
INT_DATA_0 = 0x58,
INT_DATA_1 = 0x59,
INT_LOWHIGH_0 = 0x5A,
INT_LOWHIGH_1 = 0x5B,
INT_LOWHIGH_2 = 0x5C,
INT_LOWHIGH_3 = 0x5D,
INT_LOWHIGH_4 = 0x5E,
INT_MOTION_0 = 0x5F,
INT_MOTION_1 = 0x60,
INT_MOTION_2 = 0x61,
INT_MOTION_3 = 0x62,
INT_TAP_0 = 0x63,
INT_TAP_1 = 0x64,
INT_ORIENT_0 = 0x65,
INT_ORIENT_1 = 0x66,
INT_FLAT_0 = 0x67,
INT_FLAT_1 = 0x68,
// configuration registers
FOC_CONF = 0x69,
CONF = 0x6A,
IF_CONF = 0x6B,
SELF_TEST = 0x6D,
NV_CONF = 0x70,
// offset compensation registers
OFFSET_ACCEL_X = 0x71,
OFFSET_ACCEL_Y = 0x72,
OFFSET_ACCEL_Z = 0x73,
OFFSET_GYRO_X_L = 0x74,
OFFSET_GYRO_Y_L = 0x75,
OFFSET_GYRO_Z_L = 0x76,
OFFSET_CONF = 0x77,
// step counter
STEP_CNT_L = 0x78,
STEP_CNT_H = 0x78,
STEP_CONFIG_0 = 0x7A,
STEP_CONFIG_1 = 0x7B,
// command register
CMD = 0x7E,
};
/**
* Helper wrapper around SPI object for communication with BMX160 sensor.
*
* It provides the following functionality:
*
* - SPI object configuration (mode, frame length and frequency)
* - minimal BMX160 configuration for tests
* - SPI transaction logging
* - SPI synchronous/asynchronous API usage selection
*/
class BMX160SPI3WireAPI : NonCopyable<BMX160SPI3WireAPI> {
public:
// SPI interface object and configuration
static const int _SPI_MODE = 3;
SPIExt _spi;
int _spi_freq;
DigitalOut _spi_ssel;
// asynchronous API usage flags
bool _use_async = false;
EventFlags _async_operation_complete_flag;
// helper logging data
int _transaction_count = 0;
bool _log = false;
static constexpr int _LOG_BUF_SIZE = 128;
char _log_buf[_LOG_BUF_SIZE];
void _log_msg(const char *type, const char *msg, ...)
{
if (!_log) {
return;
}
printf("[%s] ", type);
va_list args;
va_start(args, msg);
vprintf(msg, args);
va_end(args);
printf("\n");
}
static char *_format_byte(char *str, int *buf_size, char prefix, uint8_t value)
{
if (*buf_size >= 4) {
sprintf(str, "%c%02X", prefix, value);
*buf_size -= 3;
return str + 3;
} else {
// overflow
str[-1] = '!';
str[0] = '\0';
return str;
}
}
void _log_transaction(int err, uint8_t reg_addr_cmd, bool read_flag, const uint8_t *data, int len)
{
if (_log) {
int buf_size = _LOG_BUF_SIZE;
char *data_msg = _log_buf;
char data_prefix = read_flag ? '<' : '>';
data_msg = _format_byte(data_msg, &buf_size, '>', reg_addr_cmd);
for (int i = 0; i < len; i++) {
data_msg = _format_byte(data_msg, &buf_size, data_prefix, data[i]);
}
_log_msg("INFO", "spi transaction %2i; err = %2i; data: %s", _transaction_count, err, _log_buf);
}
}
void _notify_flag(int event)
{
if (event == SPI_EVENT_COMPLETE) {
// success
_async_operation_complete_flag.set(0x1);
} else {
// error
_async_operation_complete_flag.set(0x3);
}
}
int _write_async(const uint8_t *data, int len)
{
_async_operation_complete_flag.clear();
_spi.transfer<uint8_t>(data, len, nullptr, 0, callback(this, &BMX160SPI3WireAPI::_notify_flag),
SPI_EVENT_ERROR | SPI_EVENT_COMPLETE);
uint32_t result = _async_operation_complete_flag.wait_any(0x3);
return result == 0x01 ? 0 : -1;
}
int _read_async(uint8_t *data, int len)
{
_async_operation_complete_flag.clear();
_spi.transfer<uint8_t>(nullptr, 0, data, len, callback(this, &BMX160SPI3WireAPI::_notify_flag),
SPI_EVENT_ERROR | SPI_EVENT_COMPLETE);
uint32_t result = _async_operation_complete_flag.wait_any(0x3);
return result == 0x01 ? 0 : -1;
}
int _write_sync(const uint8_t *data, int len)
{
int err = 0;
if (len == 1) {
_spi.write(data[0]);
} else {
int res = _spi.write((const char *)data, len, nullptr, 0);
if (res != len) {
err = -1;
}
}
return err;
}
int _read_sync(const uint8_t *data, int len)
{
int err = 0;
int res = _spi.write(nullptr, 0, (char *)data, len);
if (res != len) {
err = -1;
}
return err;
}
public:
/**
* Constructor.
*
* @param mosi SPI MOSI pin
* @param miso SPI MISO pin. It should be NC for 3 wire SPI
* @param sclk SPI SCLK pin
* @param ssel SPI SSEL pin
* @param freq SPI frequency
*/
BMX160SPI3WireAPI(PinName mosi, PinName miso, PinName sclk, PinName ssel, int freq = 10'000'00)
: _spi(mosi, miso, sclk), _spi_freq(freq), _spi_ssel(ssel, 1)
{
}
/**
* Enable/disable logging.
*/
void set_log(bool value)
{
_log = value;
}
/**
* Enable/disable asynchronous API usage.
* @param value
*/
void set_async(bool value)
{
_use_async = value;
}
/**
* Get actual SPI frequency.
*/
int get_real_spi_frequency()
{
return _spi.get_real_frequency();
}
/**
* Perform minimal BMX160 initialization for 3-wire testing.
*/
int init()
{
return reset();
}
/**
* Reset and initialize BMX160 for for 3-wire testing.
*/
int reset()
{
int op_err, err;
err = 0;
// configure SPI
_spi.format(8, _SPI_MODE);
_spi.frequency(_spi_freq);
// delay to be sure that bmx has started
ThisThread::sleep_for(20ms);
// create rising edge with SSEL to activate SPI
_spi_ssel = 0;
ThisThread::sleep_for(1ms);
_spi_ssel = 1;
ThisThread::sleep_for(1ms);
// software reset
if ((op_err = register_write(BMX160Register::CMD, 0xB6))) {
err = op_err;
}
ThisThread::sleep_for(20ms);
// create rising edge with SSEL to activate SPI
_spi_ssel = 0;
ThisThread::sleep_for(1ms);
_spi_ssel = 1;
ThisThread::sleep_for(1ms);
// activate SPI 3-wire mode
if ((op_err = register_write(BMX160Register::IF_CONF, 0x01))) {
err = op_err;
}
// enable accelerometer to switch sensor to normal mode
if ((op_err = register_write(BMX160Register::CMD, 0x11))) {
err = op_err;
}
return err;
}
int register_write(BMX160Register reg, const uint8_t *data, int len)
{
int err_a, err_d;
int err;
uint8_t reg_addr_cmd = (uint8_t)reg;
_spi_ssel = 0;
if (!_use_async) {
err_a = _write_sync(®_addr_cmd, 1);
err_d = _write_sync(data, len);
} else {
err_a = _write_async(®_addr_cmd, 1);
err_d = _write_async(data, len);
}
_spi_ssel = 1;
err = err_a == 0 && err_d == 0 ? 0 : -1;
// log transaction
_log_transaction(err, reg_addr_cmd, false, data, len);
_transaction_count++;
return err;
}
int register_write(BMX160Register reg, uint8_t data)
{
return register_write(reg, &data, 1);
}
int register_read(BMX160Register reg, uint8_t *data, int len)
{
int err_a, err_d;
int err;
uint8_t reg_addr_cmd = (uint8_t)reg | 0x80;
_spi_ssel = 0;
if (!_use_async) {
err_a = _write_sync(®_addr_cmd, 1);
err_d = _read_sync(data, len);
} else {
err_a = _write_async(®_addr_cmd, 1);
err_d = _read_async(data, len);
}
_spi_ssel = 1;
err = err_a == 0 && err_d == 0 ? 0 : -1;
// log transaction
_log_transaction(err, reg_addr_cmd, true, data, len);
_transaction_count++;
return err;
}
int register_read(BMX160Register reg, uint8_t *data)
{
return register_read(reg, data, 1);
}
/**
* Call SPI::abort_all_transfers method.
*/
void call_spi_abort_all_transfers()
{
return _spi.abort_all_transfers();
}
};
/**
* SPI test results
*
* Note: in some cases we may transitive and receive, but dummy "reads" may be generated,
* that is indicated with `*_rw_data_ok_count` and `*_rw_clock_ok_count` fields
*/
struct spi_3_wire_test_result_t {
/** If during BMX160 configuration any SPI object methods returns an error, it will be saved here */
int init_error;
/** Total number of tests with single byte read/write */
int single_rw_count;
/** Total number of tests with single byte read/write that succeed */
int single_rw_ok_count;
/** Total number of tests with single byte read/write that returns correct data */
int single_rw_data_ok_count;
/** Total number of tests with single byte read/write that has correct number of clock cycles */
int single_rw_clock_ok_count;
/** Total number of tests with multiple byte read/write */
int burst_rw_count;
/** Total number of tests with multiple byte read/write that succeed */
int burst_rw_ok_count;
/** Total number of tests with multiple byte read/write that returns correct data */
int burst_rw_data_ok_count;
/** Total number of tests with multiple byte read/write that has correct number of clock cycles */
int burst_rw_clock_ok_count;
/** Asynchronous API usage flag */
bool async_api;
/** Target SPI frequency */
int target_spi_frequency;
/** Actual SPI frequency */
int actual_spi_frequency;
};
/**
* BMX160 sensor based SPI 3 wire tester.
*/
class BMX160SPI3WireTester : NonCopyable<BMX160SPI3WireTester> {
static constexpr int DEFAULT_TEST_NUMBER = 64;
static constexpr int DEFAULT_SPI_FREQ = 10'000'000;
protected:
PinName _spi_mosi_pin;
PinName _spi_miso_pin;
PinName _spi_sclk_pin;
PinName _spi_ssel_pin;
PinName _spi_sclk_counter_pin;
int _single_rw_test_number = DEFAULT_TEST_NUMBER;
int _burst_rw_test_number = DEFAULT_TEST_NUMBER;
int _spi_freq = DEFAULT_SPI_FREQ;
int _spi_async_api_usage;
bool _log = false;
void _log_msg(const char *type, const char *msg, ...)
{
if (!_log) {
return;
}
printf("[%s] ", type);
va_list args;
va_start(args, msg);
vprintf(msg, args);
va_end(args);
printf("\n");
}
public:
/**
* Constructor.
*
* @param spi_mosi SPI MOSI pin
* @param spi_miso SPI MISO pin. Use NC in case of 3-wire spi usage. If MCU should use 4-wire SPI whereas sensor 3-wire SPI, then connect MISO and MOSI pins.
* @param spi_sclk SPI clock pin
* @param spi_ssel SPI SSEL pin
* @param spi_sclk_counter SPI clock counter pin. It should be connected to spi_sclk pin
*/
BMX160SPI3WireTester(PinName spi_mosi, PinName spi_miso, PinName spi_sclk, PinName spi_ssel,
PinName spi_sclk_counter)
: _spi_mosi_pin(spi_mosi), _spi_miso_pin(spi_miso), _spi_sclk_pin(spi_sclk), _spi_ssel_pin(spi_ssel),
_spi_sclk_counter_pin(spi_sclk_counter)
{
}
/**
* Enable/disable logging.
*/
void set_log(bool value)
{
_log = value;
}
/**
* Set test parameters.
*
* @param spi_freq target spi frequency
* @param async_api_usage asynchronous API
* @param single_rw_test_number number of tests with single byte read/write
* @param burst_rw_test_number number of tests with multiple bytes read/write
*/
void configure(int spi_freq, bool async_api_usage,
int single_rw_test_number = DEFAULT_TEST_NUMBER, int burst_rw_test_number = DEFAULT_TEST_NUMBER)
{
_single_rw_test_number = single_rw_test_number;
_burst_rw_test_number = burst_rw_test_number;
_spi_freq = spi_freq;
_spi_async_api_usage = async_api_usage;
}
/**
* Execute tests.
*/
int test(spi_3_wire_test_result_t *test_result)
{
int api_init_err;
uint8_t out_buf[6];
uint8_t in_buf[6];
BMX160SPI3WireAPI *api = new BMX160SPI3WireAPI(
_spi_mosi_pin, _spi_miso_pin, _spi_sclk_pin, _spi_ssel_pin,
_spi_freq);
PulseCounter *pc = new PulseCounter(_spi_sclk_counter_pin, PulseCounter::RisingEdge, PullNone);
_log_msg("INFO", "================= start test =================");
api->set_async(_spi_async_api_usage);
api->set_log(_log);
if ((api_init_err = api->init())) {
_log_msg("ERROR", "API initialization error %i", api_init_err);
}
// log main information
int actual_spi_freq = api->get_real_spi_frequency();
_log_msg("INFO", "target SPI frequency: %i Hz", _spi_freq);
_log_msg("INFO", "actual SPI frequency: %i Hz", actual_spi_freq);
_log_msg("INFO", "SPI API type: %s", _spi_async_api_usage ? "asynchronous" : "synchronous");
// initialize result structure
test_result->init_error = api_init_err;
test_result->single_rw_count = _single_rw_test_number;
test_result->single_rw_ok_count = 0;
test_result->single_rw_data_ok_count = 0;
test_result->single_rw_clock_ok_count = 0;
test_result->burst_rw_count = _single_rw_test_number;
test_result->burst_rw_ok_count = 0;
test_result->burst_rw_data_ok_count = 0;
test_result->burst_rw_clock_ok_count = 0;
test_result->async_api = _spi_async_api_usage;
test_result->target_spi_frequency = _spi_freq;
test_result->actual_spi_frequency = actual_spi_freq;
_log_msg("INFO", "test single read/write");
out_buf[0] = 0;
auto single_data_updater = [](uint8_t *data) {
data[0] += 7;
};
_rw_test_impl(api, pc, test_result->single_rw_count,
out_buf, in_buf, 1, single_data_updater,
&test_result->single_rw_ok_count,
&test_result->single_rw_data_ok_count,
&test_result->single_rw_clock_ok_count
);
_log_msg("INFO", "test burst read/write");
memset(out_buf, 0, sizeof(out_buf));
auto burst_data_updater = [](uint8_t *data) {
for (int i = 0; i < 6; i++) {
data[i] += i + 1;
}
};
_rw_test_impl(api, pc, test_result->burst_rw_count,
out_buf, in_buf, 6, burst_data_updater,
&test_result->burst_rw_ok_count,
&test_result->burst_rw_data_ok_count,
&test_result->burst_rw_clock_ok_count
);
delete pc;
delete api;
_log_msg("INFO", "================ complete test ================");
return 0;
}
static char *_format_bytes(char *buf, const uint8_t *data, size_t len)
{
char *buf_ptr = buf;
for (size_t i = 0; i < len; i++) {
sprintf(buf_ptr, "%02X", data[i]);
buf_ptr += 2;
}
return buf;
}
int _rw_test_impl(BMX160SPI3WireAPI *api, PulseCounter *pc, int total_tests,
uint8_t *out_buf, uint8_t *in_buf, size_t buf_len, Callback<void(uint8_t *data)> buf_updater,
int *ok_count, int *data_ok_count, int *clock_ok_count)
{
BMX160Register base_reg = BMX160Register::OFFSET_ACCEL_X;
int err_read, err_write, err_data, err_clock;
int actual_clock_count;
int expected_clock_count = (buf_len + 1) * 2 * 8;
char in_buf_msg[16];
char out_buf_msg[16];
MBED_ASSERT(buf_len <= 6);
for (int i = 0; i < total_tests; i++) {
// clear input buffer and clock counter
memset(in_buf, 0, buf_len);
pc->reset();