-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathvisualize_tokens.py
343 lines (307 loc) · 13.8 KB
/
visualize_tokens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from collections import defaultdict
from dataclasses import dataclass
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from datasets import load_dataset
from rich.console import Console
from rich.table import Table
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
PretrainedConfig,
PreTrainedModel,
)
@dataclass
class RunRecord:
wandb_url: str
hf_repo_url: str
hf_repo_id: str
revision: str
console = Console()
if not os.path.exists("release_runs.csv"):
import wandb
keys = {
"sft": "refactor-chosen-rejected3",
"reward": "refactor-chosen-rejected3",
"ppo_left_padding_new_nowhiten_reward": "refactor-chosen-rejected3",
"dpo": "refactor-chosen-rejected2",
}
runs = []
for exp_name, tag in keys.items():
runs.extend(list(wandb.Api().runs(
path=f"costa-huang/tldr_summarize",
filters={
"$and": [
{f"config.exp_name.value": exp_name},
{"tags": {"$in": [tag]}},
]
}
)))
table = defaultdict(list)
for i in range(len(runs)):
table["base_model"].append(runs[i].config["base_model"])
table["exp"].append(runs[i].config["exp_name"])
table["seed"].append(runs[i].config["seed"])
table["wandb_url"].append(runs[i].url)
table["hf_repo_url"].append(runs[i].config["hf_repo_url"])
table["hf_repo_id"].append(runs[i].config["hf_repo_id"])
table["revision"].append(runs[i].config["run_name"])
df = pd.DataFrame(table)
df.to_csv("release_runs.csv", index=False)
else:
df = pd.read_csv("release_runs.csv")
df = df.groupby(["base_model", "exp", "seed"]).agg(lambda x: x.tolist()[0])
# feel free to change the base_model, exp, and seed; the seeds are 44413, 55513, 66613, 77713
sft_record = RunRecord(**df.loc[("EleutherAI/pythia-1b-deduped", "sft", 55513)])
ppo_record = RunRecord(**df.loc[("EleutherAI/pythia-1b-deduped", "ppo_left_padding_new_nowhiten_reward", 55513)])
dpo_record = RunRecord(**df.loc[("EleutherAI/pythia-1b-deduped", "dpo", 55513)])
rm_record = RunRecord(**df.loc[("EleutherAI/pythia-1b-deduped", "reward", 55513)])
# rm_record = RunRecord(**df.loc[("EleutherAI/pythia-6.9b-deduped", "reward", 55513)]) # larger (in some sense gold) RM
######
# RM model definition
######
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.normal_(layer.weight, std=std)
torch.nn.init.constant_(layer.bias, val=bias_const)
return layer
class ScalarModelConfig(PretrainedConfig):
def __init__(
self,
base_model: str = "EleutherAI/pythia-160m",
base_config: PretrainedConfig = AutoConfig.from_pretrained("EleutherAI/pythia-160m"),
hidden_size: int = 768,
bias: float = 0.0,
**kwargs,
):
super().__init__(**kwargs)
self.base_model = base_model
self.base_config = base_config
self.hidden_size = hidden_size
self.bias = bias
class ScalarModel(PreTrainedModel):
config_class = ScalarModelConfig
def __init__(self, config: ScalarModelConfig):
super().__init__(config)
self.config = config
self.lm_backbone = AutoModel.from_pretrained(
config.base_model,
config=self.config.base_config,
trust_remote_code=True,
)
self.scalar_head = layer_init(
nn.Linear(self.config.hidden_size, 1),
std=1 / np.sqrt(self.config.hidden_size + 1),
)
def forward(self, **kwargs):
output = self.lm_backbone(**kwargs)
reward = self.scalar_head(output.hidden_states[-1]) - self.config.bias
return reward
######
# Utility functions
######
def generate(lm_backbone, queries, tokenizer, generation_config):
"""generate in a way that does not affect padding tokens"""
context_length = queries.shape[1]
attention_mask = queries != tokenizer.pad_token_id
input_ids = torch.masked_fill(queries, ~attention_mask, 0)
output = lm_backbone.generate(
input_ids=input_ids,
attention_mask=attention_mask,
# position_ids=attention_mask.cumsum(1) - attention_mask.long(), # generation collapsed if this was turned on. TODO: why does generation collapse with this?
generation_config=generation_config,
return_dict_in_generate=True,
)
return torch.cat((queries, output.sequences[:, context_length:]), dim=1)
def forward(model, query_responses, tokenizer):
attention_mask = query_responses != tokenizer.pad_token_id
position_ids = attention_mask.cumsum(1) - attention_mask.long()
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
return model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=True,
output_hidden_states=True,
)
def get_reward(model, query_responses, tokenizer):
attention_mask = query_responses != tokenizer.pad_token_id
input_ids = torch.masked_fill(query_responses, ~attention_mask, 0)
reward_logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True,
output_hidden_states=True,
)
sequence_lengths = (torch.eq(query_responses, tokenizer.pad_token_id).long().argmax(-1) - 1).to(query_responses.device)
# https://github.com/huggingface/transformers/blob/dc68a39c8111217683bf49a4912d0c9018bab33d/src/transformers/models/gpt2/modeling_gpt2.py#L1454
return reward_logits[torch.arange(reward_logits.size(0), device=reward_logits.device), sequence_lengths], reward_logits
def print_rich_table(title: str, df: pd.DataFrame, console: Console) -> Table:
table = Table(show_lines=True)
for column in df.columns:
table.add_column(column)
for _, row in df.iterrows():
table.add_row(*row.astype(str).tolist())
console.rule(f"[bold red]{title}")
console.print(table)
######
# Start
######
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-1b-deduped")
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
response_length = 80
validation_generation_config = GenerationConfig(
max_new_tokens=response_length,
temperature=(0.01 + 1e-7),
top_k=0.0,
top_p=1.0,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
sft_dataset = load_dataset("vwxyzjn/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_1706381144")
base_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-1b-deduped").to(device)
console.print("loading", sft_record)
sft_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(
sft_record.hf_repo_id,
revision=sft_record.revision,
trust_remote_code=True,
).to(device)
console.print("loading", ppo_record)
ppo_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(
ppo_record.hf_repo_id,
revision=ppo_record.revision,
trust_remote_code=True,
).to(device)
console.print("loading", dpo_record)
dpo_model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(
dpo_record.hf_repo_id,
revision=dpo_record.revision,
trust_remote_code=True,
).to(device)
console.print("loading", rm_record)
scalar_model_config = ScalarModelConfig.from_pretrained(
rm_record.hf_repo_id,
revision=rm_record.revision,
trust_remote_code=True,
)
# hack to remove the path
# models/EleutherAI/pythia-6.9b-deduped/sft_model_55513 -> EleutherAI/pythia-6.9b-deduped
original_model = "/".join(scalar_model_config.base_config["_name_or_path"].split("/")[1:3])
scalar_model_config.base_config["_name_or_path"] = original_model
scalar_model_config.base_model = original_model
rm: PreTrainedModel = ScalarModel.from_pretrained(
rm_record.hf_repo_id,
revision=rm_record.revision,
trust_remote_code=True,
config=scalar_model_config,
).to(device)
nchecks = 4
colors = {
0: "on blue",
1: "on yellow",
2: "on yellow",
3: "on red",
}
latex_colors = {
0: "\sethlcolor{LightBlue}",
1: "\sethlcolor{LightYellow}",
2: "\sethlcolor{LightYellow}",
3: "\sethlcolor{LightRed}",
}
include_logits = False
for i in range(len(sft_dataset["validation"])):
rich_table = defaultdict(list)
latex_table = defaultdict(list)
query = torch.LongTensor(sft_dataset["validation"][i : i + 1]["query_token"]).to(device)
context_length = query.shape[1]
query_reference_response = torch.cat((query, torch.LongTensor(tokenizer.encode(sft_dataset["validation"][i]["reference_response"])).to(device).unsqueeze(0)), dim=1)
for table in [rich_table, latex_table]:
table["Type"].append("Query")
table["Content"].append(tokenizer.decode(query[0], skip_special_tokens=True))
table["Score (RM)"].append("N/A")
with torch.no_grad():
model_stats = defaultdict(list)
for aligned_model, model_name in zip(
[sft_model, ppo_model, dpo_model],
["SFT Model Response", "PPO Model Response", "DPO Model Response"],
):
aligned_model_query_response = generate(aligned_model, query, tokenizer, validation_generation_config)
aligned_model_response = aligned_model_query_response[:, context_length:]
aligned_model_reward, aligned_model_reward_logits = get_reward(rm, aligned_model_query_response, tokenizer)
aligned_model_reward_logits = aligned_model_reward_logits.squeeze(-1)[:, context_length-1:]
# AI2 visualization https://allenai.github.io/re-align/tds.html
aligned_model_output = forward(aligned_model, aligned_model_query_response, tokenizer)
base_model_output = forward(base_model, aligned_model_query_response, tokenizer)
aligned_model_logits = aligned_model_output.logits[:, context_length - 1 : -1]
_, aligned_model_topk_indices = aligned_model_logits.topk(10)
base_model_logits = base_model_output.logits[:, context_length - 1 : -1]
_, base_model_topk_indices = base_model_logits.topk(10)
aligned_model_topk_indices[:, :, 0:1].expand(-1, -1, nchecks)
matches = aligned_model_topk_indices[:, :, 0:1].expand(-1, -1, nchecks) == base_model_topk_indices[:, :, 0:nchecks]
matched = matches.sum(2)
match_idx = matches.float().argmax(2)
final_matches = torch.where(matched > 0, match_idx, nchecks - 1)
stats = torch.stack([(final_matches == i).sum(1) for i in range(nchecks)]).T
final_matches = final_matches.tolist()
aligned_model_response = aligned_model_response.tolist()
for table in [rich_table, latex_table]:
table["Type"].append(model_name)
latex_table["Content"].append(
"".join(
[
f"{latex_colors[jt]}" "\hl{" f"{tokenizer.decode(it)}" "}"
for it, jt in zip(aligned_model_response[0], final_matches[0])
]
)
)
rich_table["Content"].append(
"".join(
[
f"[{colors[jt]}]{tokenizer.decode(it)}[/{colors[jt]}]"
for it, jt in zip(aligned_model_response[0], final_matches[0])
]
)
)
for table in [rich_table, latex_table]:
table["Score (RM)"].append(str(round(aligned_model_reward[0][0].item(), 4)))
if include_logits:
table["Type"].append(f"{model_name} Reward Logits")
table["Content"].append([round(logit, 4) for logit in aligned_model_reward_logits[0].tolist()])
table["Score (RM)"].append(str(round(aligned_model_reward[0][0].item(), 4)))
# table["Type"].append("Matched Color Counts")
# table["Content"].append(stats[0])
reference_reward, reference_reward_logits = get_reward(rm, query_reference_response, tokenizer)
reference_reward_logits = reference_reward_logits.squeeze(-1)[:, context_length-1:]
for table in [rich_table, latex_table]:
table["Type"].append("Reference response")
table["Content"].append(sft_dataset["validation"][i]["reference_response"])
table["Score (RM)"].append(str(round(reference_reward[0][0].item(), 4)))
if include_logits:
table["Type"].append("Reference Reward Logits")
table["Content"].append([round(logit, 4) for logit in reference_reward_logits[0].tolist()])
table["Score (RM)"].append(str(round(reference_reward[0][0].item(), 4)))
base_model_query_response = generate(base_model, query, tokenizer, validation_generation_config)
base_model_response = base_model_query_response[:, context_length:]
base_model_reward, base_model_reward_logits = get_reward(rm, base_model_query_response, tokenizer)
base_model_reward_logits = base_model_reward_logits.squeeze(-1)[:, context_length-1:]
for table in [rich_table, latex_table]:
table["Type"].append("Base Model Response")
table["Content"].append(tokenizer.decode(base_model_response[0], skip_special_tokens=True))
table["Score (RM)"].append(str(round(base_model_reward[0][0].item(), 4)))
if include_logits:
table["Type"].append("Base Model Reward Logits")
table["Content"].append([round(logit, 4) for logit in base_model_reward_logits[0].tolist()])
table["Score (RM)"].append(str(round(base_model_reward[0][0].item(), 4)))
rich_df = pd.DataFrame(rich_table)
latex_df = pd.DataFrame(latex_table)
print_rich_table("Results", rich_df, console)
# print(latex_df.to_latex(index=False))
if input("Continue? (press `n` to stop) ") == "n":
break