diff --git a/cleanrl/ppo_continuous_action.py b/cleanrl/ppo_continuous_action.py index 6efcfbbd..5c2257de 100644 --- a/cleanrl/ppo_continuous_action.py +++ b/cleanrl/ppo_continuous_action.py @@ -184,21 +184,18 @@ def get_action_and_value(self, x, action=None): # ALGO Logic: Storage setup obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) - next_obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) - next_dones = torch.zeros((args.num_steps, args.num_envs)).to(device) - next_terminations = torch.zeros((args.num_steps, args.num_envs)).to(device) + dones = torch.zeros((args.num_steps, args.num_envs)).to(device) values = torch.zeros((args.num_steps, args.num_envs)).to(device) # TRY NOT TO MODIFY: start the game global_step = 0 start_time = time.time() - next_ob, _ = envs.reset(seed=args.seed) - next_ob = torch.Tensor(next_ob).to(device) + next_obs, _ = envs.reset(seed=args.seed) + next_obs = torch.Tensor(next_obs).to(device) next_done = torch.zeros(args.num_envs).to(device) - next_termination = torch.zeros(args.num_envs).to(device) for iteration in range(1, args.num_iterations + 1): # Annealing the rate if instructed to do so. @@ -209,34 +206,24 @@ def get_action_and_value(self, x, action=None): for step in range(0, args.num_steps): global_step += args.num_envs + obs[step] = next_obs + dones[step] = next_done - ob = next_ob # ALGO LOGIC: action logic with torch.no_grad(): - action, logprob, _, value = agent.get_action_and_value(ob) + action, logprob, _, value = agent.get_action_and_value(next_obs) + values[step] = value.flatten() + actions[step] = action + logprobs[step] = logprob # TRY NOT TO MODIFY: execute the game and log data. - next_ob, reward, next_termination, next_truncation, info = envs.step(action.cpu().numpy()) - - # Correct next obervation (for vec gym) - real_next_ob = next_ob.copy() - for idx, trunc in enumerate(next_truncation): - if trunc: - real_next_ob[idx] = info["final_observation"][idx] - next_ob = torch.Tensor(next_ob).to(device) - - # Collect trajectory - obs[step] = torch.Tensor(ob).to(device) - next_obs[step] = torch.Tensor(real_next_ob).to(device) - actions[step] = torch.Tensor(action).to(device) - logprobs[step] = torch.Tensor(logprob).to(device) - values[step] = torch.Tensor(value.flatten()).to(device) - next_terminations[step] = torch.Tensor(next_termination).to(device) - next_dones[step] = torch.Tensor(np.logical_or(next_termination, next_truncation)).to(device) + next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy()) + next_done = np.logical_or(terminations, truncations) rewards[step] = torch.tensor(reward).to(device).view(-1) + next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(next_done).to(device) - if "final_info" in info: - for info in info["final_info"]: + if "final_info" in infos: + for info in infos["final_info"]: if info and "episode" in info: print(f"global_step={global_step}, episodic_return={info['episode']['r']}") writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step) @@ -244,18 +231,18 @@ def get_action_and_value(self, x, action=None): # bootstrap value if not done with torch.no_grad(): - next_values = torch.zeros_like(values[0]).to(device) + next_value = agent.get_value(next_obs).reshape(1, -1) advantages = torch.zeros_like(rewards).to(device) lastgaelam = 0 for t in reversed(range(args.num_steps)): if t == args.num_steps - 1: - next_values = agent.get_value(next_obs[t]).flatten() + nextnonterminal = 1.0 - next_done + nextvalues = next_value else: - value_mask = next_dones[t].bool() - next_values[value_mask] = agent.get_value(next_obs[t][value_mask]).flatten() - next_values[~value_mask] = values[t + 1][~value_mask] - delta = rewards[t] + args.gamma * next_values * (1 - next_terminations[t]) - values[t] - advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * (1 - next_dones[t]) * lastgaelam + nextnonterminal = 1.0 - dones[t + 1] + nextvalues = values[t + 1] + delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t] + advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam returns = advantages + values # flatten the batch @@ -363,4 +350,4 @@ def get_action_and_value(self, x, action=None): push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval") envs.close() - writer.close() + writer.close() \ No newline at end of file diff --git a/cleanrl/ppo_continuous_action_truncted.py b/cleanrl/ppo_continuous_action_truncted.py new file mode 100644 index 00000000..6efcfbbd --- /dev/null +++ b/cleanrl/ppo_continuous_action_truncted.py @@ -0,0 +1,366 @@ +# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy +import os +import random +import time +from dataclasses import dataclass + +import gymnasium as gym +import numpy as np +import torch +import torch.nn as nn +import torch.optim as optim +import tyro +from torch.distributions.normal import Normal +from torch.utils.tensorboard import SummaryWriter + + +@dataclass +class Args: + exp_name: str = os.path.basename(__file__)[: -len(".py")] + """the name of this experiment""" + seed: int = 1 + """seed of the experiment""" + torch_deterministic: bool = True + """if toggled, `torch.backends.cudnn.deterministic=False`""" + cuda: bool = True + """if toggled, cuda will be enabled by default""" + track: bool = False + """if toggled, this experiment will be tracked with Weights and Biases""" + wandb_project_name: str = "cleanRL" + """the wandb's project name""" + wandb_entity: str = None + """the entity (team) of wandb's project""" + capture_video: bool = False + """whether to capture videos of the agent performances (check out `videos` folder)""" + save_model: bool = False + """whether to save model into the `runs/{run_name}` folder""" + upload_model: bool = False + """whether to upload the saved model to huggingface""" + hf_entity: str = "" + """the user or org name of the model repository from the Hugging Face Hub""" + + # Algorithm specific arguments + env_id: str = "HalfCheetah-v4" + """the id of the environment""" + total_timesteps: int = 1000000 + """total timesteps of the experiments""" + learning_rate: float = 3e-4 + """the learning rate of the optimizer""" + num_envs: int = 1 + """the number of parallel game environments""" + num_steps: int = 2048 + """the number of steps to run in each environment per policy rollout""" + anneal_lr: bool = True + """Toggle learning rate annealing for policy and value networks""" + gamma: float = 0.99 + """the discount factor gamma""" + gae_lambda: float = 0.95 + """the lambda for the general advantage estimation""" + num_minibatches: int = 32 + """the number of mini-batches""" + update_epochs: int = 10 + """the K epochs to update the policy""" + norm_adv: bool = True + """Toggles advantages normalization""" + clip_coef: float = 0.2 + """the surrogate clipping coefficient""" + clip_vloss: bool = True + """Toggles whether or not to use a clipped loss for the value function, as per the paper.""" + ent_coef: float = 0.0 + """coefficient of the entropy""" + vf_coef: float = 0.5 + """coefficient of the value function""" + max_grad_norm: float = 0.5 + """the maximum norm for the gradient clipping""" + target_kl: float = None + """the target KL divergence threshold""" + + # to be filled in runtime + batch_size: int = 0 + """the batch size (computed in runtime)""" + minibatch_size: int = 0 + """the mini-batch size (computed in runtime)""" + num_iterations: int = 0 + """the number of iterations (computed in runtime)""" + + +def make_env(env_id, idx, capture_video, run_name, gamma): + def thunk(): + if capture_video and idx == 0: + env = gym.make(env_id, render_mode="rgb_array") + env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") + else: + env = gym.make(env_id) + env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space + env = gym.wrappers.RecordEpisodeStatistics(env) + env = gym.wrappers.ClipAction(env) + env = gym.wrappers.NormalizeObservation(env) + env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10)) + env = gym.wrappers.NormalizeReward(env, gamma=gamma) + env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10)) + return env + + return thunk + + +def layer_init(layer, std=np.sqrt(2), bias_const=0.0): + torch.nn.init.orthogonal_(layer.weight, std) + torch.nn.init.constant_(layer.bias, bias_const) + return layer + + +class Agent(nn.Module): + def __init__(self, envs): + super().__init__() + self.critic = nn.Sequential( + layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), + nn.Tanh(), + layer_init(nn.Linear(64, 64)), + nn.Tanh(), + layer_init(nn.Linear(64, 1), std=1.0), + ) + self.actor_mean = nn.Sequential( + layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)), + nn.Tanh(), + layer_init(nn.Linear(64, 64)), + nn.Tanh(), + layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01), + ) + self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape))) + + def get_value(self, x): + return self.critic(x) + + def get_action_and_value(self, x, action=None): + action_mean = self.actor_mean(x) + action_logstd = self.actor_logstd.expand_as(action_mean) + action_std = torch.exp(action_logstd) + probs = Normal(action_mean, action_std) + if action is None: + action = probs.sample() + return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x) + + +if __name__ == "__main__": + args = tyro.cli(Args) + args.batch_size = int(args.num_envs * args.num_steps) + args.minibatch_size = int(args.batch_size // args.num_minibatches) + args.num_iterations = args.total_timesteps // args.batch_size + run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}" + if args.track: + import wandb + + wandb.init( + project=args.wandb_project_name, + entity=args.wandb_entity, + sync_tensorboard=True, + config=vars(args), + name=run_name, + monitor_gym=True, + save_code=True, + ) + writer = SummaryWriter(f"runs/{run_name}") + writer.add_text( + "hyperparameters", + "|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])), + ) + + # TRY NOT TO MODIFY: seeding + random.seed(args.seed) + np.random.seed(args.seed) + torch.manual_seed(args.seed) + torch.backends.cudnn.deterministic = args.torch_deterministic + + device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu") + + # env setup + envs = gym.vector.SyncVectorEnv( + [make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)] + ) + assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported" + + agent = Agent(envs).to(device) + optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) + + # ALGO Logic: Storage setup + obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) + next_obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) + actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) + logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device) + rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) + next_dones = torch.zeros((args.num_steps, args.num_envs)).to(device) + next_terminations = torch.zeros((args.num_steps, args.num_envs)).to(device) + values = torch.zeros((args.num_steps, args.num_envs)).to(device) + + # TRY NOT TO MODIFY: start the game + global_step = 0 + start_time = time.time() + next_ob, _ = envs.reset(seed=args.seed) + next_ob = torch.Tensor(next_ob).to(device) + next_done = torch.zeros(args.num_envs).to(device) + next_termination = torch.zeros(args.num_envs).to(device) + + for iteration in range(1, args.num_iterations + 1): + # Annealing the rate if instructed to do so. + if args.anneal_lr: + frac = 1.0 - (iteration - 1.0) / args.num_iterations + lrnow = frac * args.learning_rate + optimizer.param_groups[0]["lr"] = lrnow + + for step in range(0, args.num_steps): + global_step += args.num_envs + + ob = next_ob + # ALGO LOGIC: action logic + with torch.no_grad(): + action, logprob, _, value = agent.get_action_and_value(ob) + + # TRY NOT TO MODIFY: execute the game and log data. + next_ob, reward, next_termination, next_truncation, info = envs.step(action.cpu().numpy()) + + # Correct next obervation (for vec gym) + real_next_ob = next_ob.copy() + for idx, trunc in enumerate(next_truncation): + if trunc: + real_next_ob[idx] = info["final_observation"][idx] + next_ob = torch.Tensor(next_ob).to(device) + + # Collect trajectory + obs[step] = torch.Tensor(ob).to(device) + next_obs[step] = torch.Tensor(real_next_ob).to(device) + actions[step] = torch.Tensor(action).to(device) + logprobs[step] = torch.Tensor(logprob).to(device) + values[step] = torch.Tensor(value.flatten()).to(device) + next_terminations[step] = torch.Tensor(next_termination).to(device) + next_dones[step] = torch.Tensor(np.logical_or(next_termination, next_truncation)).to(device) + rewards[step] = torch.tensor(reward).to(device).view(-1) + + if "final_info" in info: + for info in info["final_info"]: + if info and "episode" in info: + print(f"global_step={global_step}, episodic_return={info['episode']['r']}") + writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step) + writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step) + + # bootstrap value if not done + with torch.no_grad(): + next_values = torch.zeros_like(values[0]).to(device) + advantages = torch.zeros_like(rewards).to(device) + lastgaelam = 0 + for t in reversed(range(args.num_steps)): + if t == args.num_steps - 1: + next_values = agent.get_value(next_obs[t]).flatten() + else: + value_mask = next_dones[t].bool() + next_values[value_mask] = agent.get_value(next_obs[t][value_mask]).flatten() + next_values[~value_mask] = values[t + 1][~value_mask] + delta = rewards[t] + args.gamma * next_values * (1 - next_terminations[t]) - values[t] + advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * (1 - next_dones[t]) * lastgaelam + returns = advantages + values + + # flatten the batch + b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) + b_logprobs = logprobs.reshape(-1) + b_actions = actions.reshape((-1,) + envs.single_action_space.shape) + b_advantages = advantages.reshape(-1) + b_returns = returns.reshape(-1) + b_values = values.reshape(-1) + + # Optimizing the policy and value network + b_inds = np.arange(args.batch_size) + clipfracs = [] + for epoch in range(args.update_epochs): + np.random.shuffle(b_inds) + for start in range(0, args.batch_size, args.minibatch_size): + end = start + args.minibatch_size + mb_inds = b_inds[start:end] + + _, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds]) + logratio = newlogprob - b_logprobs[mb_inds] + ratio = logratio.exp() + + with torch.no_grad(): + # calculate approx_kl http://joschu.net/blog/kl-approx.html + old_approx_kl = (-logratio).mean() + approx_kl = ((ratio - 1) - logratio).mean() + clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()] + + mb_advantages = b_advantages[mb_inds] + if args.norm_adv: + mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8) + + # Policy loss + pg_loss1 = -mb_advantages * ratio + pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef) + pg_loss = torch.max(pg_loss1, pg_loss2).mean() + + # Value loss + newvalue = newvalue.view(-1) + if args.clip_vloss: + v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2 + v_clipped = b_values[mb_inds] + torch.clamp( + newvalue - b_values[mb_inds], + -args.clip_coef, + args.clip_coef, + ) + v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2 + v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped) + v_loss = 0.5 * v_loss_max.mean() + else: + v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean() + + entropy_loss = entropy.mean() + loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef + + optimizer.zero_grad() + loss.backward() + nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) + optimizer.step() + + if args.target_kl is not None and approx_kl > args.target_kl: + break + + y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() + var_y = np.var(y_true) + explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y + + # TRY NOT TO MODIFY: record rewards for plotting purposes + writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step) + writer.add_scalar("losses/value_loss", v_loss.item(), global_step) + writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step) + writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) + writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step) + writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step) + writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) + writer.add_scalar("losses/explained_variance", explained_var, global_step) + print("SPS:", int(global_step / (time.time() - start_time))) + writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step) + + if args.save_model: + model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model" + torch.save(agent.state_dict(), model_path) + print(f"model saved to {model_path}") + from cleanrl_utils.evals.ppo_eval import evaluate + + episodic_returns = evaluate( + model_path, + make_env, + args.env_id, + eval_episodes=10, + run_name=f"{run_name}-eval", + Model=Agent, + device=device, + gamma=args.gamma, + ) + for idx, episodic_return in enumerate(episodic_returns): + writer.add_scalar("eval/episodic_return", episodic_return, idx) + + if args.upload_model: + from cleanrl_utils.huggingface import push_to_hub + + repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}" + repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name + push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval") + + envs.close() + writer.close()