-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodegen.cpp
229 lines (217 loc) · 7.68 KB
/
codegen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include "codegen.h"
size_t ham_dist(const std::bitset<NMAX>& l, const std::bitset<NMAX>& r) {
return NMAX - (~(l ^ r)).count();
}
std::vector<std::shared_ptr<Vertex> > GenBinaryCodeGraph(size_t thr, size_t code_bits) {
std::list<std::shared_ptr<Vertex> > vertexes(1 << code_bits);
auto iter = vertexes.begin();
for (size_t idx = 0; idx < vertexes.size(); idx++, iter++) {
iter->reset(new Vertex(std::bitset<NMAX>(idx), code_bits));
}
// Find adjacencies.
for (auto iter1 = vertexes.begin(); iter1 != vertexes.end(); iter1++) {
auto iter2 = iter1;
for (iter2++; iter2 != vertexes.end(); iter2++) {
auto val1 = *iter1;
auto val2 = *iter2;
std::string s1 = (std::string)(*val1);
std::string s2 = (std::string)(*val2);
size_t dist = ham_dist(val1->code, val2->code);
if (dist >= thr) {
val1->AppendAdj(VrxAdj(val2, dist));
val2->AppendAdj(VrxAdj(val1, dist));
}
}
}
// Remove non connected vertexes.
for (auto iter = vertexes.begin(); iter != vertexes.end(); ) {
auto next = iter;
next++;
if ((*iter)->adjs.empty()) {
vertexes.erase(iter);
}
iter = next;
}
// Convert from list to vector.
std::vector<std::shared_ptr<Vertex> > vec2ret;
vec2ret.assign(vertexes.begin(), vertexes.end());
return vec2ret;
}
std::list<std::shared_ptr<Vertex> > FindSubset(std::shared_ptr<Vertex> pivot, size_t thr,
std::list<std::shared_ptr<Vertex> > src) {
std::list<std::shared_ptr<Vertex> > vertexes(src.begin(), src.end());
// close located vertexes.
for (auto iter = vertexes.begin(); iter != vertexes.end(); ) {
auto next = iter;
next++;
if (ham_dist(pivot->code, (*iter)->code) < thr) {
vertexes.erase(iter);
}
iter = next;
}
return vertexes;
}
std::list<std::shared_ptr<Vertex> > FindSubset0(std::shared_ptr<Vertex> pivot, size_t thr, std::list<VrxAdj> src) {
std::list<std::shared_ptr<Vertex> > l2do;
for (auto var : src) {
l2do.emplace_back(var.vrx);
}
return FindSubset(pivot, thr, l2do);
}
std::vector<std::shared_ptr<Vertex> > generate_code_d2(size_t seed, size_t code_bits) {
std::vector<std::shared_ptr<Vertex> > gcode(1 << (code_bits - 1));
// Fill gray code table.
auto iter = gcode.begin();
for(size_t num = 0; num < (1 << code_bits); num += 2, iter++) {
iter->reset(new Vertex(std::bitset<NMAX>(num ^ (num >> 1)), code_bits));
}
return gcode;
}
std::vector<std::shared_ptr<Vertex> > generate_code_d3(size_t seed, size_t code_bits) {
const size_t DIST = 3;
if (code_bits > NMAX) throw std::out_of_range("maximum code width exceeded");
std::vector<std::shared_ptr<Vertex> > graph = GenBinaryCodeGraph(DIST, code_bits);
// Generate code by decimation.
std::default_random_engine gen(seed);
std::uniform_int_distribution<size_t> idxgen(0, graph.size() - 1);
// Start from random node
auto elem = graph[idxgen(gen)];
std::vector<std::shared_ptr<Vertex> > gcode;
gcode.emplace_back(elem);
gcode.emplace_back(gcode[0]->adjs.front().vrx);
std::list<std::shared_ptr<Vertex> > ss = FindSubset0(gcode[1], DIST, gcode[0]->adjs);
size_t idx = 2;
while(!ss.empty()) {
gcode.emplace_back(ss.front());
ss = FindSubset(gcode[idx++], DIST, ss);
}
// Remove adjacencies because it isn't correct anymore.
for (auto elem : gcode) {
elem->adjs.clear();
}
return gcode;
}
bool mark_sp_used(std::vector<std::shared_ptr<Vertex> >& code_vrx, const std::bitset<NMAX>& scode, unsigned used_tag) {
// Search around code and sp1.
std::shared_ptr<Vertex> vrx_found;
for (auto& vrx : code_vrx) {
if (vrx->code == scode) {
vrx_found = vrx;
for (auto& pu : vrx->sp1_pu) {
pu.used = used_tag;
}
}
}
if (vrx_found) {
for (auto& vrx : code_vrx) {
if (vrx->code == vrx_found->code) continue;
// Find similar codes in sp1 of other vertexes.
for (size_t idx1 = 0; idx1 < vrx->sp1.size(); idx1++) {
for (size_t idx2 = 0; idx2 < vrx_found->sp1.size(); idx2++) {
if (vrx->sp1[idx1] == vrx_found->sp1[idx2]) {
vrx->sp1_pu[idx1].used = used_tag;
break;
}
}
}
}
return true;
}
// Also protect
return false;
}
bool mark_link_used(std::vector<std::shared_ptr<Vertex> >& code_vrx, std::shared_ptr<Vertex> vrx,
const std::bitset<NMAX>& scode, unsigned used_tag) {
// Seek in sp1.
size_t idx_sp1 = 0;
for (auto& sp1_code : vrx->sp1) {
if (sp1_code == scode) {
// Found in sp1 -> mark all connected vertexes as used.
for (auto& co : vrx->sp1_pu[idx_sp1].conn) {
code_vrx[co.from_code]->used = used_tag;
}
return true;
}
idx_sp1++;
}
return false;
}
void Vertex::PrepareSheres() {
for (size_t idx1 = 0; idx1 < this->code_bits; idx1++) {
this->sp1.emplace_back(this->code ^ std::bitset<NMAX>(1 << idx1));
this->sp1_pu.emplace_back(PortUsage());
for (size_t idx2 = 0; idx2 < this->code_bits; idx2++) {
if (idx1 != idx2) {
auto cti = this->code ^ std::bitset<NMAX>((1 << idx1) | (1 << idx2));
if (this->sp2.find(cti) == this->sp2.end()) {
this->sp2[cti] = std::vector<size_t>();
}
this->sp2[cti].emplace_back(idx1);
}
}
}
}
void intersect_code_spheres(std::vector<std::shared_ptr<Vertex> >& code, XSecType xsectype) {
// Initialize spheres.
for (auto iter1 = code.begin(); iter1 != code.end(); iter1++) {
(*iter1)->PrepareSheres();
}
// Find intersections.
for (auto iter1 = code.begin(); iter1 != code.end(); iter1++) { // sp 1
if (xsectype == SP1xSP2) {
size_t idx2 = 0;
for (auto iter2 = code.begin(); iter2 != code.end(); iter2++, idx2++) { // sp 2
if (iter1 != iter2) {
auto val1 = *iter1;
auto val2 = *iter2;
std::string s1 = (std::string)(*val1);
std::string s2 = (std::string)(*val2);
// cycle over all sp1
for (size_t isp1_v1 = 0; isp1_v1 < val1->sp1.size(); isp1_v1++) {
for (auto& psp2_v2: val2->sp2) {
if (psp2_v2.first == val1->sp1[isp1_v1]) {
for(auto port : psp2_v2.second) {
val1->sp1_pu[isp1_v1].conn.emplace_back(PortConn());
val1->sp1_pu[isp1_v1].conn.back().from_code = idx2;
val1->sp1_pu[isp1_v1].conn.back().from_port = port;
}
}
}
}
}
}
} else if (xsectype == SP1xSP1) {
size_t idx2 = 0;
for (auto iter2 = code.begin(); iter2 != code.end(); iter2++, idx2++) {
if (iter1 != iter2) {
auto val1 = *iter1;
auto val2 = *iter2;
std::string s1 = (std::string)(*val1);
std::string s2 = (std::string)(*val2);
// cycle over all sp1
for (size_t isp1_v1 = 0; isp1_v1 < val1->sp1.size(); isp1_v1++) {
for (size_t isp1_v2 = 0; isp1_v2 < val2->sp1.size(); isp1_v2++) {
if (val2->sp1[isp1_v2] == val1->sp1[isp1_v1]) {
val1->sp1_pu[isp1_v1].conn.emplace_back(PortConn());
val1->sp1_pu[isp1_v1].conn.back().from_code = idx2;
val1->sp1_pu[isp1_v1].conn.back().from_port = -1;
}
}
}
}
}
} else {
std::ostringstream oss;
oss << xsectype;
throw std::runtime_error("unknown intersect type" + oss.str());
}
}
}
void clear_tag(std::vector<std::shared_ptr<Vertex> >& code, unsigned used_tag) {
for (const auto& vrx : code) {
if (vrx->used == used_tag) vrx->used = used_Unused;
for (size_t idx = 0; idx < vrx->sp1_pu.size(); idx++) {
if (vrx->sp1_pu[idx].used == used_tag) vrx->sp1_pu[idx].used = used_Unused;
}
}
}