Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 21 additions & 3 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -647,13 +647,31 @@ steps:
- label: Blackwell Test
working_dir: "/vllm-workspace/"
gpu: b200
optional: true
# optional: true
source_file_dependencies:
- csrc/
- vllm/
- csrc/quantization/fp4/
- csrc/attention/mla/
- csrc/quantization/cutlass_w8a8/moe/
- vllm/model_executor/layers/fused_moe/cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py
- vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py
- vllm/v1/attention/backends/flashinfer.py
- vllm/compilation/fusion.py
commands:
- nvidia-smi
- python3 examples/offline_inference/basic/chat.py
# Attention
# num_heads2 broken by https://github.com/flashinfer-ai/flashinfer/issues/1353
- pytest -v -s tests/kernels/attention/test_flashinfer.py -k 'not num_heads2'
- pytest -v -s tests/kernels/attention/test_flashinfer_trtllm_decode_attention.py
- pytest -v -s tests/kernels/test_cutlass_mla_decode.py
# Quantization
- pytest -v -s tests/kernels/quantization/test_cutlass_scaled_mm.py -k 'fp8'
- pytest -v -s tests/kernels/quantization/test_nvfp4_quant.py
- pytest -v -s tests/kernels/quantization/test_nvfp4_scaled_mm.py
- pytest -v -s tests/kernels/moe/test_nvfp4_moe.py
# Fusion
- pytest -v -s tests/compile/test_fusion_all_reduce.py

##### 1 GPU test #####
##### multi gpus test #####
Expand Down
15 changes: 9 additions & 6 deletions tests/compile/test_fusion_all_reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,12 +136,15 @@ def ops_in_model_before(self):


@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("test_model", [
TestAllReduceRMSNormModel,
TestAllReduceFusedAddRMSNormModel,
TestAllReduceFusedAddRMSNormStaticQuantFP8Model,
TestAllReduceFusedAddRMSNormStaticQuantFP4Model,
])
@pytest.mark.parametrize(
"test_model",
[
TestAllReduceRMSNormModel,
TestAllReduceFusedAddRMSNormModel,
TestAllReduceFusedAddRMSNormStaticQuantFP8Model,
# TODO: Enable with torch==2.8.0
# TestAllReduceFusedAddRMSNormStaticQuantFP4Model,
])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [8])
@pytest.mark.parametrize("hidden_size", [16])
Expand Down
5 changes: 0 additions & 5 deletions tests/kernels/quantization/test_cutlass_scaled_mm.py
Original file line number Diff line number Diff line change
Expand Up @@ -559,8 +559,6 @@ def test_cutlass_fp8_group_gemm(num_experts: int, per_act_token: bool,
m_a_scales = m_g if per_act_token else 1
n_b_scales = n_g if per_out_ch else 1

print("shape:", m_g, n_g, k_g)

# Create group-specific A and B (FP8) and output (FP16/FP32)
a_g = to_fp8(torch.randn((m_g, k_g), device=device))
b_g = to_fp8(torch.randn((n_g, k_g), device=device).t())
Expand Down Expand Up @@ -639,7 +637,4 @@ def test_cutlass_fp8_group_gemm(num_experts: int, per_act_token: bool,
for g in range(num_experts):
baseline = baseline_tensors[g]
c = out_tensors_stacked[expert_offsets[g]:expert_offsets[g + 1]]
print(baseline)
print(c)
print("*")
torch.testing.assert_close(c, baseline, rtol=1e-2, atol=5e-4)