You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
$ python collect_env.py
Collecting environment information...
WARNING 08-29 11:55:28 _custom_ops.py:17] Failed to import from vllm._C with ImportError('libcuda.so.1: cannot open shared object file: No such file or directory')
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Fedora release 40 (Forty) (x86_64)
GCC version: (GCC) 14.2.1 20240801 (Red Hat 14.2.1-1)
Clang version: 18.1.6 (Fedora 18.1.6-3.fc40)
CMake version: version 3.28.2
Libc version: glibc-2.39
Python version: 3.12.5 (main, Aug 7 2024, 00:00:00) [GCC 14.2.1 20240801 (Red Hat 14.2.1-1)] (64-bit runtime)
Python platform: Linux-6.10.6-200.fc40.x86_64-x86_64-with-glibc2.39
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 39 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Vendor ID: GenuineIntel
Model name: Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz
CPU family: 6
Model: 165
Thread(s) per core: 2
Core(s) per socket: 6
Socket(s): 1
Stepping: 2
CPU(s) scaling MHz: 82%
CPU max MHz: 5100.0000
CPU min MHz: 800.0000
BogoMIPS: 5399.81
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp vnmi pku ospke md_clear flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 192 KiB (6 instances)
L1i cache: 192 KiB (6 instances)
L2 cache: 1.5 MiB (6 instances)
L3 cache: 12 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-11
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Mitigation; Microcode
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flake8==7.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.20
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.44.2
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.5@09c7792610ada9f88bbf87d32b472dd44bf23cc2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect
🐛 Describe the bug
Running .gguf files without .gguf extension does not work... renaming these files with .gguf extension and running without any flags (just using "vllm serve granite-code:latest.gguf") works.
Expected behaviour is that we don't require .gguf extension to run .gguf file.
$ vllm serve ~/.local/share/ramalama/models/ollama/granite-code:latest --quantization gguf --load-format gguf
WARNING 08-29 11:56:16 _custom_ops.py:17] Failed to import from vllm._C with ImportError('libcuda.so.1: cannot open shared object file: No such file or directory')
INFO 08-29 11:56:19 api_server.py:440] vLLM API server version 0.5.5
INFO 08-29 11:56:19 api_server.py:441] args: Namespace(model_tag='/home/curtine/.local/share/ramalama/models/ollama/granite-code:latest', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, model='/home/curtine/.local/share/ramalama/models/ollama/granite-code:latest', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, download_dir=None, load_format='gguf', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=None, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization='gguf', rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None, dispatch_function=<function serve at 0x7f15a2e81f80>)
Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/transformers/configuration_utils.py", line 722, in _get_config_dict
config_dict = cls._dict_from_json_file(resolved_config_file)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/transformers/configuration_utils.py", line 825, in _dict_from_json_file
text = reader.read()
^^^^^^^^^^^^^
File "<frozen codecs>", line 322, in decode
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xac in position 446: invalid start byte
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/local/bin/vllm", line 8, in <module>
sys.exit(main())
^^^^^^
File "/usr/local/lib64/python3.12/site-packages/vllm/scripts.py", line 156, in main
args.dispatch_function(args)
File "/usr/local/lib64/python3.12/site-packages/vllm/scripts.py", line 37, in serve
asyncio.run(run_server(args))
File "/usr/lib64/python3.12/asyncio/runners.py", line 194, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/usr/lib64/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib64/python3.12/asyncio/base_events.py", line 687, in run_until_complete
return future.result()
^^^^^^^^^^^^^^^
File "/usr/local/lib64/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 443, in run_server
async with build_async_engine_client(args) as async_engine_client:
File "/usr/lib64/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib64/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 117, in build_async_engine_client
if (model_is_embedding(args.model, args.trust_remote_code,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib64/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 71, in model_is_embedding
return ModelConfig(model=model_name,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib64/python3.12/site-packages/vllm/config.py", line 169, in __init__
self.hf_config = get_config(self.model, trust_remote_code, revision,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib64/python3.12/site-packages/vllm/transformers_utils/config.py", line 64, in get_config
config = AutoConfig.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/transformers/models/auto/configuration_auto.py", line 976, in from_pretrained
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/transformers/configuration_utils.py", line 632, in get_config_dict
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/transformers/configuration_utils.py", line 726, in _get_config_dict
raise EnvironmentError(
OSError: It looks like the config file at '/home/curtine/.local/share/ramalama/models/ollama/granite-code:latest' is not a valid JSON file.
Before submitting a new issue...
Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
The text was updated successfully, but these errors were encountered:
Thanks for reporting! This would be a bit tricky to achieve cleanly since we need to pipe down the information to these places for fetching the config and tokenizer from the file
Your current environment
The output of `python collect_env.py`
🐛 Describe the bug
Running .gguf files without .gguf extension does not work... renaming these files with .gguf extension and running without any flags (just using "vllm serve granite-code:latest.gguf") works.
Expected behaviour is that we don't require .gguf extension to run .gguf file.
Before submitting a new issue...
The text was updated successfully, but these errors were encountered: