Skip to content

[Bug]: Error in V1 engine when run with --convert reward #25840

@iseeyuan

Description

@iseeyuan

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : CentOS Stream 9 (x86_64)
GCC version                  : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-11)
Clang version                : Could not collect
CMake version                : version 4.1.0
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu129
Is debug build               : False
CUDA used to build PyTorch   : 12.9
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Aug 14 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-11)] (64-bit runtime)
Python platform              : Linux-6.4.3-0_fbk15_hardened_2630_gf27365f948db-x86_64-with-glibc2.34

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.9.86
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA H100
GPU 1: NVIDIA H100
GPU 2: NVIDIA H100
GPU 3: NVIDIA H100
GPU 4: NVIDIA H100
GPU 5: NVIDIA H100
GPU 6: NVIDIA H100
GPU 7: NVIDIA H100

Nvidia driver version        : 550.90.07
cuDNN version                : Probably one of the following:
/usr/lib64/libcudnn.so.9.12.0
/usr/lib64/libcudnn_adv.so.9.12.0
/usr/lib64/libcudnn_cnn.so.9.12.0
/usr/lib64/libcudnn_engines_precompiled.so.9.12.0
/usr/lib64/libcudnn_engines_runtime_compiled.so.9.12.0
/usr/lib64/libcudnn_graph.so.9.12.0
/usr/lib64/libcudnn_heuristic.so.9.12.0
/usr/lib64/libcudnn_ops.so.9.12.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      52 bits physical, 57 bits virtual
Byte Order:                         Little Endian
CPU(s):                             368
On-line CPU(s) list:                0-367
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 9654 96-Core Processor
CPU family:                         25
Model:                              17
Thread(s) per core:                 1
Core(s) per socket:                 368
Socket(s):                          1
Stepping:                           1
BogoMIPS:                           4792.79
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean flushbyasid pausefilter pfthreshold v_vmsave_vmload vgif vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm flush_l1d arch_capabilities
Virtualization:                     AMD-V
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          23 MiB (368 instances)
L1i cache:                          23 MiB (368 instances)
L2 cache:                           184 MiB (368 instances)
L3 cache:                           16 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-367
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Vulnerable
Vulnerability Spectre v1:           Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2:           Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.9.1.4
[pip3] nvidia-cuda-cupti-cu12==12.9.79
[pip3] nvidia-cuda-nvrtc-cu12==12.9.86
[pip3] nvidia-cuda-runtime-cu12==12.9.79
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.4.1.4
[pip3] nvidia-cufile-cu12==1.14.1.1
[pip3] nvidia-curand-cu12==10.3.10.19
[pip3] nvidia-cusolver-cu12==11.7.5.82
[pip3] nvidia-cusparse-cu12==12.5.10.65
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.9.86
[pip3] nvidia-nvtx-cu12==12.9.79
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu129
[pip3] torchaudio==2.8.0+cu129
[pip3] torchvision==0.23.0+cu129
[pip3] transformers==4.56.2
[pip3] triton==3.4.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.11.0rc2.dev39+gb1ded114b (git sha: b1ded114b)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    0-367   0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    0-367   0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    0-367   0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    0-367   0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    0-367   0               N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    0-367   0               N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    0-367   0               N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      0-367   0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
CUDA_CACHE_PATH=/data/users/myuan/.nv/ComputeCache
CUDA_INCLUDE_DIRS=/usr/local/cuda-12.9/include
PYTORCH_SRC=/home/myuan/src/pytorch
CUDA_NVCC_EXECUTABLE=/home/myuan/ccache/cuda/nvcc
LD_LIBRARY_PATH=/usr/local/cuda-12.9/lib64:
CUDA_CUDART_LIBRARY=/usr/local/cuda-12.9/lib64/libcudart.so
CUDA_HOME=/usr/local/cuda-12.9
CUDA_HOME=/usr/local/cuda-12.9
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

When running

vllm serve Qwen/Qwen2.5-7B --runner pooling --convert reward

There's error

EngineCore_DP0 pid=2362918)   File "/home/myuan/src/vllm/vllm/v1/worker/gpu_model_runner.py", line 3237, in _dummy_pooler_run
(EngineCore_DP0 pid=2362918)     max_task = max(output_size.items(), key=lambda x: x[1])[0]
(EngineCore_DP0 pid=2362918)                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=2362918) ValueError: max() iterable argument is empty

Full log in https://gist.github.com/iseeyuan/d21feea9f582a0eae7cddc5089509c09

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

Labels

bugSomething isn't working

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions