|
30 | 30 | from vllm.config import VllmConfig |
31 | 31 | from vllm.distributed import parallel_state |
32 | 32 | from vllm.distributed import utils as dist_utils |
33 | | -from vllm.model_executor.layers.activation import _ACTIVATION_REGISTRY |
| 33 | +from vllm.model_executor.layers.activation import (_ACTIVATION_REGISTRY, |
| 34 | + get_act_and_mul_fn) |
34 | 35 | from vllm.model_executor.layers.layernorm import RMSNorm |
35 | 36 | from vllm.model_executor.layers.quantization import QuantizationConfig |
36 | 37 | from vllm.model_executor.models.qwen2_5_vl import ( |
|
42 | 43 | from vllm.multimodal import MULTIMODAL_REGISTRY |
43 | 44 |
|
44 | 45 | from vllm_ascend.models.qwen2_5_vl import AscendQwen2_5_VisionRotaryEmbedding |
| 46 | +from vllm_ascend.utils import vllm_version_is |
45 | 47 |
|
46 | 48 |
|
47 | 49 | class AscendQwen2_5_VisionAttention_Without_Padding(Qwen2_5_VisionAttention): |
@@ -171,12 +173,16 @@ def __init__( |
171 | 173 | in_channels=vision_config.in_channels, |
172 | 174 | hidden_size=self.hidden_size, |
173 | 175 | ) |
| 176 | + |
| 177 | + act_fn = get_act_and_mul_fn(vision_config.hidden_act) |
| 178 | + if vllm_version_is("0.10.0"): |
| 179 | + act_fn = _ACTIVATION_REGISTRY[vision_config.hidden_act] |
174 | 180 | self.blocks = nn.ModuleList([ |
175 | 181 | AscendQwen2_5_VisionBlock_Without_Padding( |
176 | 182 | dim=self.hidden_size, |
177 | 183 | num_heads=self.num_heads, |
178 | 184 | mlp_hidden_dim=vision_config.intermediate_size, |
179 | | - act_fn=_ACTIVATION_REGISTRY[vision_config.hidden_act], |
| 185 | + act_fn=act_fn, |
180 | 186 | norm_layer=norm_layer, |
181 | 187 | quant_config=quant_config, |
182 | 188 | prefix=f"{prefix}.blocks.{layer_idx}") |
|
0 commit comments