This repository has been archived by the owner on Sep 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
movenet-multipose.js
167 lines (148 loc) · 5.94 KB
/
movenet-multipose.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
const fs = require('fs');
const path = require('path');
const process = require('process');
const log = require('@vladmandic/pilogger');
const tf = require('@tensorflow/tfjs-node');
const canvas = require('canvas');
const modelOptions = {
modelPath: 'file://models/movenet-multipose.json', // https://storage.googleapis.com/movenet/MoveNet.MultiPose%20Model%20Card.pdf
minConfidence: 0.2,
};
const bodyParts = ['nose', 'leftEye', 'rightEye', 'leftEar', 'rightEar', 'leftShoulder', 'rightShoulder', 'leftElbow', 'rightElbow', 'leftWrist', 'rightWrist', 'leftHip', 'rightHip', 'leftKnee', 'rightKnee', 'leftAnkle', 'rightAnkle'];
// save image with processed results
async function saveImage(res, img) {
// create canvas
const c = new canvas.Canvas(img.inputShape[1], img.inputShape[0]);
const ctx = c.getContext('2d');
// load and draw original image
const original = await canvas.loadImage(img.fileName);
ctx.drawImage(original, 0, 0, c.width, c.height);
// const fontSize = Math.trunc(c.width / 50);
const fontSize = Math.round((c.width * c.height) ** (1 / 2) / 80);
ctx.lineWidth = 2;
ctx.strokeStyle = 'white';
ctx.font = `${fontSize}px "Segoe UI"`;
// draw all detected objects
for (const person of res) {
for (const obj of person.parts) {
ctx.fillStyle = 'black';
ctx.fillText(`${Math.round(100 * obj.score)}% ${obj.label}`, obj.x + 1, obj.y + 1);
ctx.fillStyle = 'white';
ctx.fillText(`${Math.round(100 * obj.score)}% ${obj.label}`, obj.x, obj.y);
}
ctx.stroke();
const connectParts = (parts, color) => {
ctx.strokeStyle = color;
ctx.beginPath();
for (let i = 0; i < parts.length; i++) {
const part = person.parts.find((a) => a.label === parts[i]);
if (part) {
if (i === 0) ctx.moveTo(part.x, part.y);
else ctx.lineTo(part.x, part.y);
}
}
ctx.stroke();
};
connectParts(['nose', 'leftEye', 'rightEye', 'nose'], '#99FFFF');
connectParts(['rightShoulder', 'rightElbow', 'rightWrist'], '#99CCFF');
connectParts(['leftShoulder', 'leftElbow', 'leftWrist'], '#99CCFF');
connectParts(['rightHip', 'rightKnee', 'rightAnkle'], '#9999FF');
connectParts(['leftHip', 'leftKnee', 'leftAnkle'], '#9999FF');
connectParts(['rightShoulder', 'leftShoulder', 'leftHip', 'rightHip', 'rightShoulder'], '#9900FF');
}
// write canvas to jpeg
const outImage = `outputs/${path.basename(img.fileName)}`;
const out = fs.createWriteStream(outImage);
out.on('finish', () => log.state('Created output image:', outImage, 'size:', [c.width, c.height]));
out.on('error', (err) => log.error('Error creating image:', outImage, err));
const stream = c.createJPEGStream({ quality: 0.6, progressive: true, chromaSubsampling: true });
stream.pipe(out);
}
// load image from file and prepares image tensor that fits the model
async function loadImage(fileName, inputSize) {
const data = fs.readFileSync(fileName);
const obj = tf.tidy(() => {
const buffer = tf.node.decodeImage(data);
const expand = buffer.expandDims(0);
// @ts-ignore
const resize = tf.image.resizeBilinear(expand, [inputSize, inputSize]);
const cast = tf.cast(resize, 'int32');
const tensor = cast;
const img = { fileName, tensor, inputShape: buffer?.shape, modelShape: tensor?.shape, size: buffer?.size };
return img;
});
return obj;
}
async function processResults(res, img) {
const data = res.arraySync();
log.info('Tensor output', res.shape);
// log.data(data);
res.dispose();
const people = [];
for (let p = 0; p < data[0].length; p++) {
const kpt = data[0][p];
const score = kpt[51 + 4];
// eslint-disable-next-line no-continue
if (score < modelOptions.minConfidence) continue;
const parts = [];
for (let i = 0; i < 17; i++) {
const part = {
id: i,
label: bodyParts[i],
score: kpt[3 * i + 2],
xRaw: kpt[3 * i + 1],
yRaw: kpt[3 * i + 0],
x: Math.trunc(kpt[3 * i + 1] * img.inputShape[1]),
y: Math.trunc(kpt[3 * i + 0] * img.inputShape[0]),
};
parts.push(part);
}
const boxRaw = [kpt[51 + 1], kpt[51 + 0], kpt[51 + 3] - kpt[51 + 1], kpt[51 + 2] - kpt[51 + 0]];
people.push({
id: p,
score,
boxRaw,
box: boxRaw.map((a) => Math.trunc(a * img.inputShape[1])),
parts,
});
}
return people;
}
async function main() {
log.header();
// init tensorflow
await tf.enableProdMode();
await tf.setBackend('tensorflow');
await tf.ENV.set('DEBUG', false);
await tf.ready();
// load model
const model = await tf.loadGraphModel(modelOptions.modelPath);
log.info('Loaded model', modelOptions, 'tensors:', tf.engine().memory().numTensors, 'bytes:', tf.engine().memory().numBytes);
// @ts-ignore
log.info('Model Signature', model.signature);
// load image and get approprite tensor for it
let inputSize = Object.values(model.modelSignature['inputs'])[0].tensorShape.dim[2].size;
if (inputSize === -1) inputSize = 256;
const imageFile = process.argv.length > 2 ? process.argv[2] : null;
if (!imageFile || !fs.existsSync(imageFile)) {
log.error('Specify a valid image file');
process.exit();
}
const img = await loadImage(imageFile, inputSize);
log.info('Loaded image:', img.fileName, 'inputShape:', img.inputShape, 'modelShape:', img.modelShape, 'decoded size:', img.size);
// run actual prediction
const t0 = process.hrtime.bigint();
// for (let i = 0; i < 99; i++) model.execute(img.tensor); // benchmarking
const res = model.execute(img.tensor);
const t1 = process.hrtime.bigint();
log.info('Inference time:', Math.round(parseInt((t1 - t0).toString()) / 1000 / 1000), 'ms');
// process results
const results = await processResults(res, img);
const t2 = process.hrtime.bigint();
log.info('Processing time:', Math.round(parseInt((t2 - t1).toString()) / 1000 / 1000), 'ms');
// print results
log.data('Results:', results);
// save processed image
await saveImage(results, img);
}
main();