-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg_agent.py
165 lines (138 loc) · 6.83 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import random
import copy
from collections import namedtuple, deque
from model import Actor, Critic
import torch
import torch.nn.functional as F
import torch.optim as optim
# BUFFER_SIZE = int(1e5) # replay buffer size
# BATCH_SIZE = 256 # minibatch size
# TAU = 1e-3 # for soft update of target parameters
LR_ACTOR = 1e-4 # learning rate of the actor
LR_CRITIC = 3e-4 # learning rate of the critic
WEIGHT_DECAY = 0 # L2 weight decay
NOISE_REDUCTION_RATE = 0.99
EPISODES_BEFORE_TRAINING = 500
NOISE_START=1.0
NOISE_END=0.1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, num_agents, random_seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size*num_agents, action_size*num_agents, random_seed).to(device)
self.critic_target = Critic(state_size*num_agents, action_size*num_agents, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)
self.soft_update(self.critic_local, self.critic_target, 1)
self.soft_update(self.actor_local, self.actor_target, 1)
# Noise process
self.noise = OUNoise(action_size, random_seed)
self.noise_reduction_ratio = NOISE_START
self.step_count = 0
def act(self, state, i_episode, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy()
self.actor_local.train()
if add_noise:
if i_episode > EPISODES_BEFORE_TRAINING and self.noise_reduction_ratio > NOISE_END:
self.noise_reduction_ratio = NOISE_REDUCTION_RATE**(i_episode-EPISODES_BEFORE_TRAINING)
# noise_reduction_ratio = 1
action += self.noise_reduction_ratio * self.add_noise2()
# action += noise_reduction_ratio * self.noise.sample()
return np.clip(action, -1, 1)
def add_noise2(self):
# noise = 0.5*np.random.randn(1,self.action_size) #sigma of 0.5 as sigma of 1 will have alot of actions just clipped
noise = 0.5*np.random.standard_normal(self.action_size)
return noise
def reset(self):
self.noise.reset()
def learn(self, experiences, gamma):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
full_states, actions, actor_local_actions, actor_target_actions, agent_state, agent_action, agent_reward, agent_done, next_states, next_full_states = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
# actions_next = self.actor_target(next_states)
Q_targets_next = self.critic_target(next_full_states, actor_target_actions)
# Compute Q targets for current states (y_i)
Q_targets = agent_reward + (gamma * Q_targets_next * (1 - agent_done))
# Compute critic loss
Q_expected = self.critic_local(full_states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
# torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
# actions_pred = self.actor_local(agent_state)
actor_loss = -self.critic_local(full_states, actor_local_actions).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
# self.soft_update(self.critic_local, self.critic_target, TAU)
# self.soft_update(self.actor_local, self.actor_target, TAU)
def hard_copy_weights(self, target, source):
""" copy weights from source to target network (part of initialization)"""
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_(param.data)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.1):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()
self.size = size
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
# dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
dx = self.theta * (self.mu - x) + self.sigma * np.random.standard_normal(self.size)
self.state = x + dx
return self.state