|
83 | 83 |
|
84 | 84 | ### References
|
85 | 85 |
|
86 |
| -1. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165. (paper) |
87 |
| -2. Chernozhukov, Victor, et al. "Double/debiased/neyman machine learning of treatment effects." American Economic Review 107.5 (2017): 261-65. (paper) |
88 |
| -3. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017). (paper) |
89 |
| -4. Tso, Fung Po, et al. "DragonNet: a robust mobile internet service system for long-distance trains." IEEE transactions on mobile computing 12.11 (2013): 2206-2218. (paper) |
90 |
| -5. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017). (paper) |
91 |
| -6. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242. (paper) |
92 |
| -7. Oprescu, Miruna, et al. "EconML: A Machine Learning Library for Estimating Heterogeneous Treatment Effects." (repo) |
93 |
| -8. Chen, Huigang, et al. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020). (repo) |
94 |
| -9. Yao, Liuyi, et al. "A survey on causal inference." arXiv preprint arXiv:2002.02770 (2020). (paper) |
95 |
| -10. Goldenberg, Dmitri, et al. "Personalization in Practice: Methods and Applications." Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 2021. (paper) |
96 |
| -11. Blackwell, Matthew. "A selection bias approach to sensitivity analysis for causal effects." Political Analysis 22.2 (2014): 169-182. (paper) |
97 |
| -12. Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896 (2017). (paper) |
98 |
| -13. Sharma, Amit, and Emre Kiciman. "Causal Inference and Counterfactual Reasoning." Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 2020. 369-370. (paper) |
99 |
| -14. Li, Ang, and Judea Pearl. "Unit selection based on counterfactual logic." Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. 2019. (paper) |
100 |
| -15. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020). (paper) |
101 |
| -16. Gruber, Susan, and Mark J. Van Der Laan. "Targeted maximum likelihood estimation: A gentle introduction." (2009). (paper) |
102 |
| -17. D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 |
103 |
| -18. V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 |
104 |
| -19. M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019. |
105 |
| -20. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017. |
106 |
| -21. Battocchi, K., Dillon, E., Hei, M., Lewis, G., Oprescu, M., & Syrgkanis, V. (2021). Estimating the Long-Term Effects of Novel Treatments. arXiv preprint arXiv:2103.08390. |
107 |
| -22. Lewis, G., & Syrgkanis, V. (2020). Double/Debiased Machine Learning for Dynamic Treatment Effects. arXiv preprint arXiv:2002.07285. |
| 86 | +1. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165. ([paper](https://www.pnas.org/content/pnas/116/10/4156.full.pdf)) |
| 87 | +2. Chernozhukov, Victor, et al. "Double/debiased/neyman machine learning of treatment effects." American Economic Review 107.5 (2017): 261-65. ([paper](https://arxiv.org/pdf/1701.08687)) |
| 88 | +3. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017) ([paper](https://arxiv.org/pdf/1712.04912)) |
| 89 | +4. Tso, Fung Po, et al. "DragonNet: a robust mobile internet service system for long-distance trains." IEEE transactions on mobile computing 12.11 (2013): 2206-2218. ([paper](https://eprints.gla.ac.uk/56409/1/56409.pdf)) |
| 90 | +5. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017) ([paper](https://arxiv.org/pdf/1705.08821)) |
| 91 | +6. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242. ([paper](https://www.tandfonline.com/doi/pdf/10.1080/01621459.2017.1319839)) |
| 92 | +7. Oprescu, Miruna, et al. "EconML: A Machine Learning Library for Estimating Heterogeneous Treatment Effects." ([repo](https://github.com/microsoft/EconML)) |
| 93 | +8. Chen, Huigang, et al. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020) ([repo](https://github.com/uber/causalml)) |
| 94 | +9. Yao, Liuyi, et al. "A survey on causal inference." arXiv preprint arXiv:2002.02770 (2020). ([paper](https://arxiv.org/pdf/2002.02770.pdf)) |
| 95 | +10. Goldenberg, Dmitri, et al. "Personalization in Practice: Methods and Applications." Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 2021 ([paper](https://drive.google.com/drive/folders/1c_khoTDRbkoRY5OiaxEfUxRQkyNv3FeK)) |
| 96 | +11. Blackwell, Matthew. "A selection bias approach to sensitivity analysis for causal effects." Political Analysis 22.2 (2014): 169-182. ([paper](https://www.cambridge.org/core/journals/political-analysis/article/selection-bias-approach-to-sensitivity-analysis-for-causal-effects/788C169FAF5482452566811136D4F9B4)) |
| 97 | +12. Athey, Susan, and Stefan Wager. "Efficient policy learning." arXiv preprint arXiv:1702.02896 (2017). ([paper](https://arxiv.org/pdf/1702.02896.pdf)) |
| 98 | +13. Sharma, Amit, and Emre Kiciman. "Causal Inference and Counterfactual Reasoning." Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 2020. 369-370. ([paper](https://dl.acm.org/doi/abs/10.1145/3371158.3371231)) |
| 99 | +14. Li, Ang, and Judea Pearl. "Unit selection based on counterfactual logic." Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. 2019 ([paper](https://par.nsf.gov/biblio/10180278)) |
| 100 | +15. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020) ([paper](https://arxiv.org/pdf/2004.14497.pdf)) |
| 101 | +16. Gruber, Susan, and Mark J. Van Der Laan. "Targeted maximum likelihood estimation: A gentle introduction." (2009) ([paper](https://biostats.bepress.com/cgi/viewcontent.cgi?article=1255&context=ucbbiostat)) |
| 102 | +17. D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 ([paper](https://arxiv.org/pdf/1901.09036.pdf)) |
| 103 | +18. V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019 ([paper](https://arxiv.org/pdf/1905.10176.pdf)) |
| 104 | +19. M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019 ([paper](http://proceedings.mlr.press/v97/oprescu19a/oprescu19a.pdf)) |
| 105 | +20. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017 ([paper](http://proceedings.mlr.press/v70/hartford17a/hartford17a.pdf)) |
| 106 | +21. Battocchi, K., Dillon, E., Hei, M., Lewis, G., Oprescu, M., & Syrgkanis, V. (2021). Estimating the Long-Term Effects of Novel Treatments. arXiv preprint arXiv:2103.08390. ([paper](https://arxiv.org/pdf/2103.08390.pdf)) |
| 107 | +22. Lewis, G., & Syrgkanis, V. (2020). Double/Debiased Machine Learning for Dynamic Treatment Effects. arXiv preprint arXiv:2002.07285. ([paper](https://arxiv.org/pdf/2002.07285.pdf)) |
108 | 108 |
|
109 | 109 |
|
110 | 110 | # Posts
|
0 commit comments