-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
135 lines (108 loc) · 4.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""resnet model is used initially which outputs the only one value
"""
import numpy as np
import torch
import sys
import cv2
import os
import matplotlib.pyplot as plt
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, models, transforms
import math
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, down_sample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_planes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.down_sample = down_sample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.down_sample is not None:
residual = self.down_sample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.in_planes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Sequential(nn.Linear(512 * block.expansion, 128),
nn.BatchNorm1d(128),
nn.ReLU(True),
nn.Linear(128, num_classes))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
down_sample = None
if stride != 1 or self.in_planes != planes * block.expansion:
down_sample = nn.Sequential(
nn.Conv2d(self.in_planes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = [block(self.in_planes, planes, stride, down_sample)]
self.in_planes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
# [batch_size * seq_len, 1, input_size, input_size]
x = self.conv1(x)
# [batch_size * seq_len, 64, input_size // 2, input_size // 2]
x = self.max_pool(x)
# [batch_size * seq_len, 64, input_size // 4, input_size // 4]
x = self.layer1(x)
# [batch_size * seq_len, 64, input_size // 4, input_size // 4]
x = self.layer2(x)
# [batch_size * seq_len, 64, input_size // 8, input_size // 8]
x = self.layer3(x)
# [batch_size * seq_len, 64, input_size // 16, input_size // 16]
x = self.layer4(x)
# [batch_size * seq_len, 64, input_size // 32, input_size // 32]
x = self.global_avg_pool(x)
# [batch_size * seq_len, 512 * expansion, 1, 1]
x = x.view(x.size(0), -1)
# [batch_size * seq_len, 512 * expansion]
x = self.fc(x)
# [batch_size * seq_len, num_classes]
return x
class FloorModel(nn.Module):
def __init__(self, num_classes, layers):
super(FloorModel, self).__init__()
self.resnet = ResNet(BasicBlock, layers, num_classes)
def forward(self, x):
# [batch_size, 1, input_size, input_size]
x = self.resnet(x)
# [batch_size, num_classes]
return x