-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathLifeCycleModel8.m
251 lines (215 loc) · 13.1 KB
/
LifeCycleModel8.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
%% Life-Cycle Model 8: Idiosyncratic shocks
% Introduce z, an exogenous shock that takes two possible values, 1 and 0,
% representing employment and unemploymnet respectively.
% Need to change n_z, z_grid, and pi_z. Also need to modify contents of the return function.
% We plot V and Policy so that you can get an idea of how the 'shape' of these changes and how to interpret them.
%% How does VFI Toolkit think about this?
%
% One decision variable: h, labour hours worked
% One endogenous state variable: a, assets (total household savings)
% One stochastic exogenous state variable: z, an exogenous shock that takes two possible values, 1 and 0, representing employment and unemploymnet respectively.
% Age: j
%% Begin setting up to use VFI Toolkit to solve
% Lets model agents from age 20 to age 100, so 81 periods
Params.agejshifter=19; % Age 20 minus one. Makes keeping track of actual age easy in terms of model age
Params.J=100-Params.agejshifter; % =81, Number of period in life-cycle
% Grid sizes to use
n_d=51; % Endogenous labour choice (fraction of time worked)
n_a=201; % Endogenous asset holdings
n_z=2; % Exogenous 'unemployment' shock
N_j=Params.J; % Number of periods in finite horizon
%% Parameters
% Discount rate
Params.beta = 0.96;
% Preferences
Params.sigma = 2; % Coeff of relative risk aversion (curvature of consumption)
Params.eta = 1.5; % Curvature of leisure (This will end up being 1/Frisch elasty)
Params.psi = 10; % Weight on leisure
% Prices
Params.w=1; % Wage
Params.r=0.05; % Interest rate (0.05 is 5%)
% Demographics
Params.agej=1:1:Params.J; % Is a vector of all the agej: 1,2,3,...,J
Params.Jr=46;
% Pensions
Params.pension=0.3;
% Age-dependent labor productivity units
Params.kappa_j=[linspace(0.5,2,Params.Jr-15),linspace(2,1,14),zeros(1,Params.J-Params.Jr+1)];
% Conditional survival probabilities: sj is the probability of surviving to be age j+1, given alive at age j
% Most countries have calculations of these (as they are used by the government departments that oversee pensions)
% In fact I will here get data on the conditional death probabilities, and then survival is just 1-death.
% Here I just use them for the US, taken from "National Vital Statistics Report, volume 58, number 10, March 2010."
% I took them from first column (qx) of Table 1 (Total Population)
% Conditional death probabilities
Params.dj=[0.006879, 0.000463, 0.000307, 0.000220, 0.000184, 0.000172, 0.000160, 0.000149, 0.000133, 0.000114, 0.000100, 0.000105, 0.000143, 0.000221, 0.000329, 0.000449, 0.000563, 0.000667, 0.000753, 0.000823,...
0.000894, 0.000962, 0.001005, 0.001016, 0.001003, 0.000983, 0.000967, 0.000960, 0.000970, 0.000994, 0.001027, 0.001065, 0.001115, 0.001154, 0.001209, 0.001271, 0.001351, 0.001460, 0.001603, 0.001769, 0.001943, 0.002120, 0.002311, 0.002520, 0.002747, 0.002989, 0.003242, 0.003512, 0.003803, 0.004118, 0.004464, 0.004837, 0.005217, 0.005591, 0.005963, 0.006346, 0.006768, 0.007261, 0.007866, 0.008596, 0.009473, 0.010450, 0.011456, 0.012407, 0.013320, 0.014299, 0.015323,...
0.016558, 0.018029, 0.019723, 0.021607, 0.023723, 0.026143, 0.028892, 0.031988, 0.035476, 0.039238, 0.043382, 0.047941, 0.052953, 0.058457, 0.064494,...
0.071107, 0.078342, 0.086244, 0.094861, 0.104242, 0.114432, 0.125479, 0.137427, 0.150317, 0.164187, 0.179066, 0.194979, 0.211941, 0.229957, 0.249020, 0.269112, 0.290198, 0.312231, 1.000000];
% dj covers Ages 0 to 100
Params.sj=1-Params.dj(21:101); % Conditional survival probabilities
Params.sj(end)=0; % In the present model the last period (j=J) value of sj is actually irrelevant
% Warm glow of bequest
Params.warmglow1=0.3; % (relative) importance of bequests
Params.warmglow2=3; % bliss point of bequests (essentially, the target amount)
Params.warmglow3=Params.sigma; % By using the same curvature as the utility of consumption it makes it much easier to guess appropraite parameter values for the warm glow
%% Grids
% The ^3 means that there are more points near 0 and near 10. We know from
% theory that the value function will be more 'curved' near zero assets,
% and putting more points near curvature (where the derivative changes the most) increases accuracy of results.
a_grid=10*(linspace(0,1,n_a).^3)'; % The ^3 means most points are near zero, which is where the derivative of the value fn changes most.
z_grid=[1;0]; % the first entry is employment and the second is unemployment.
pi_z=[0.7, 0.3; 0.5, 0.5]; % p_ee=0.7, p_eu=0.3, p_ue=0.5, p_uu=0.5
% Grid for labour choice
h_grid=linspace(0,1,n_d)'; % Notice that it is imposing the 0<=h<=1 condition implicitly
% Switch into toolkit notation
d_grid=h_grid;
%% Now, create the return function
DiscountFactorParamNames={'beta','sj'};
% Notice change to 'LifeCycleModel8_ReturnFn'
ReturnFn=@(h,aprime,a,z,w,sigma,psi,eta,agej,Jr,pension,r,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj) LifeCycleModel8_ReturnFn(h,aprime,a,z,w,sigma,psi,eta,agej,Jr,pension,r,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj);
%% Now solve the value function iteration problem, just to check that things are working before we go to General Equilbrium
disp('Test ValueFnIter')
vfoptions=struct(); % Just using the defaults.
tic;
[V, Policy]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid, pi_z, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
toc
% V is now (a,z,j). This was already true, just that previously z was trivial (a single point)
% Compare
size(V)
% with
[n_a,n_z,N_j]
% there are the same.
% Policy is
size(Policy)
% which is the same as
[length(n_d)+length(n_a),n_a,n_z,N_j]
% The n_a,n_z,N_j represent the state on which the decisions/policys
% depend, and there is one decision for each decision variable 'd' and each endogenous state variable 'a'
%% Let's take a quick look at what we have calculated, namely V and Policy
% The value function V depends on the state, so now it depends on both asset holdings and age.
% Note that z_grid=[1;0], so the first entry is employment and the second is unemployment.
% We can plot V as a 3d plot (surf is matlab command for 3d plot)
figure(1)
subplot(2,2,1); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(1:1:Params.J),reshape(V(:,2,:),[n_a,Params.J]))
title('Value function: minimum value of z (unemployment)')
xlabel('Assets (a)')
ylabel('Age j')
subplot(2,2,2); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(Params.agejshifter+(1:1:Params.J)),reshape(V(:,2,:),[n_a,Params.J]))
title('Value function: minimum value of z (unemployment)')
xlabel('Assets (a)')
ylabel('Age in Years')
subplot(2,2,3); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(1:1:Params.J),reshape(V(:,1,:),[n_a,Params.J]))
title('Value function: maximum value of z (employment)')
xlabel('Assets (a)')
ylabel('Age j')
subplot(2,2,4); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(Params.agejshifter+(1:1:Params.J)),reshape(V(:,1,:),[n_a,Params.J]))
title('Value function: maximum value of z (employment)')
xlabel('Assets (a)')
ylabel('Age in Years')
% Do another plot of V, this time as a function (of assets) for a given age (I do a few for different ages)
figure(2)
subplot(5,1,1); plot(a_grid,V(:,2,1),a_grid,V(:,1,1)) % j=1
title('Value fn at age j=1')
legend('z=unemployment','z=employment') % Just include the legend once in the top subplot
subplot(5,1,2); plot(a_grid,V(:,2,20),a_grid,V(:,1,20)) % j=20
title('Value fn at age j=20')
subplot(5,1,3); plot(a_grid,V(:,2,45),a_grid,V(:,1,45)) % j=45
title('Value fn at age j=45')
subplot(5,1,4); plot(a_grid,V(:,2,46),a_grid,V(:,1,46)) % j=46
title('Value fn at age j=46 (first year of retirement)')
subplot(5,1,5); plot(a_grid,V(:,2,81),a_grid,V(:,1,81)) % j=81
title('Value fn at age j=81')
xlabel('Assets (a)')
% Convert the policy function to values (rather than indexes).
% Note that there is one policy for hours worked (h), and another for next
% period assets (aprime).
% Policy(1,:,:,:) is h, Policy(2,:,:,:) is aprime [as function of (a,z,j)]
% Plot both as a 3d plot.
figure(3)
PolicyVals=PolicyInd2Val_Case1_FHorz(Policy,n_d,n_a,n_z,N_j,d_grid,a_grid,simoptions);
subplot(2,2,1); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(1:1:Params.J),reshape(PolicyVals(1,:,1,:),[n_a,Params.J]))
title('Policy function: fraction of time worked (h), z=employed')
xlabel('Assets (a)')
ylabel('Age j')
zlabel('Fraction of Time Worked (h)')
subplot(2,2,2); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(1:1:Params.J),reshape(PolicyVals(2,:,1,:),[n_a,Params.J]))
title('Policy function: next period assets (aprime), z=employed')
xlabel('Assets (a)')
ylabel('Age j')
zlabel('Next period assets (aprime)')
subplot(2,2,3); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(1:1:Params.J),reshape(PolicyVals(1,:,2,:),[n_a,Params.J]))
title('Policy function: fraction of time worked (h), z=unemployed')
xlabel('Assets (a)')
ylabel('Age j')
zlabel('Fraction of Time Worked (h)')
subplot(2,2,4); surf(a_grid*ones(1,Params.J),ones(n_a,1)*(1:1:Params.J),reshape(PolicyVals(2,:,2,:),[n_a,Params.J]))
title('Policy function: next period assets (aprime), z=unemployed')
xlabel('Assets (a)')
ylabel('Age j')
zlabel('Next period assets (aprime)')
% Again, plot both policies (h and aprime), this time as a function (of assets) for a given age (I do a few for different ages)
figure(4)
subplot(5,2,1); plot(a_grid,PolicyVals(1,:,2,1),a_grid,PolicyVals(1,:,1,1)) % j=1
title('Policy for h at age j=1')
subplot(5,2,3); plot(a_grid,PolicyVals(1,:,2,20),a_grid,PolicyVals(1,:,1,20)) % j=20
title('Policy for h at age j=20')
subplot(5,2,5); plot(a_grid,PolicyVals(1,:,2,45),a_grid,PolicyVals(1,:,1,45)) % j=45
title('Policy for h at age j=45')
subplot(5,2,6); plot(a_grid,PolicyVals(1,:,2,46),a_grid,PolicyVals(1,:,1,46)) % j=46
title('Policy for h at age j=46 (first year of retirement)')
subplot(5,2,9); plot(a_grid,PolicyVals(1,:,2,81),a_grid,PolicyVals(1,:,1,81)) % j=81
title('Policy for h at age j=81')
xlabel('Assets (a)')
subplot(5,2,2); plot(a_grid,PolicyVals(2,:,2,1),a_grid,PolicyVals(2,:,1,1)) % j=1
title('Policy for aprime at age j=1')
legend('z=unemployment','z=employment') % Just include the legend once in the top-right subplot
subplot(5,2,4); plot(a_grid,PolicyVals(2,:,2,20),a_grid,PolicyVals(2,:,1,20)) % j=20
title('Policy for aprime at age j=20')
subplot(5,2,6); plot(a_grid,PolicyVals(2,:,2,45),a_grid,PolicyVals(2,:,1,45)) % j=45
title('Policy for aprime at age j=45')
subplot(5,2,8); plot(a_grid,PolicyVals(2,:,2,46),a_grid,PolicyVals(2,:,1,46)) % j=46
title('Policy for aprime at age j=46 (first year of retirement)')
subplot(5,2,10); plot(a_grid,PolicyVals(2,:,2,81),a_grid,PolicyVals(2,:,1,81)) % j=81
title('Policy for aprime at age j=81')
xlabel('Assets (a)')
%% Now, we want to graph Life-Cycle Profiles
%% Initial distribution of agents at birth (j=1)
% Before we plot the life-cycle profiles we have to define how agents are
% at age j=1. We will give them all zero assets.
jequaloneDist=zeros(n_a,n_z,'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,floor((n_z+1)/2))=1; % All agents start with zero assets, and the median shock
%% We now compute the 'stationary distribution' of households
% Start with a mass of one at initial age, use the conditional survival
% probabilities sj to calculate the mass of those who survive to next
% period, repeat. Once done for all ages, normalize to one
Params.mewj=ones(1,Params.J); % Marginal distribution of households over age
for jj=2:length(Params.mewj)
Params.mewj(jj)=Params.sj(jj-1)*Params.mewj(jj-1);
end
Params.mewj=Params.mewj./sum(Params.mewj); % Normalize to one
AgeWeightsParamNames={'mewj'}; % So VFI Toolkit knows which parameter is the mass of agents of each age
simoptions=struct(); % Use the default options
StationaryDist=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy,n_d,n_a,n_z,N_j,pi_z,Params,simoptions);
% Again, we will explain in a later model what the stationary distribution
% is, it is not important for our current goal of graphing the life-cycle profile
%% FnsToEvaluate are how we say what we want to graph the life-cycles of
% Like with return function, we have to include (h,aprime,a,z) as first
% inputs, then just any relevant parameters.
FnsToEvaluate.fractiontimeworked=@(h,aprime,a,z) h; % h is fraction of time worked
FnsToEvaluate.earnings=@(h,aprime,a,z,w,kappa_j) w*kappa_j*z*h; % w*kappa_j*z*h is the labor earnings (note: h will be zero when z is zero, so could just use w*kappa_j*h)
FnsToEvaluate.assets=@(h,aprime,a,z) a; % a is the current asset holdings
% notice that we have called these fractiontimeworked, earnings and assets
%% Calculate the life-cycle profiles
AgeConditionalStats=LifeCycleProfiles_FHorz_Case1(StationaryDist,Policy,FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid,simoptions);
% For example
% AgeConditionalStats.earnings.Mean
% There are things other than Mean, but in our current deterministic model
% in which all agents are born identical the rest are meaningless.
%% Plot the life cycle profiles of fraction-of-time-worked, earnings, and assets
figure(5)
subplot(3,1,1); plot(1:1:Params.J,AgeConditionalStats.fractiontimeworked.Mean)
title('Life Cycle Profile: Fraction Time Worked (h)')
subplot(3,1,2); plot(1:1:Params.J,AgeConditionalStats.earnings.Mean)
title('Life Cycle Profile: Labor Earnings (w kappa_j h)')
subplot(3,1,3); plot(1:1:Params.J,AgeConditionalStats.assets.Mean)
title('Life Cycle Profile: Assets (a)')