-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathLifeCycleModel18.m
319 lines (270 loc) · 19.7 KB
/
LifeCycleModel18.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
%% Life-Cycle Model 18: Precautionary savings with endogenous labor
% We saw precautionary savings with exogenous labor in Life-Cycle Model 17.
% We now repeat this, but this time with endogenous labor.
% Recall that precautionary savings are about increasing asset holdings as a way for households
% to help reduce the probability of the borrowing constraints binding.
% Now endogenous labor supply means there is another way to avoid reduce the probability of the
% borrowing constraint binding by working more when assets are low.
% We will see that this 'precautionary labor supply' acts as an substitute for precautionary savings.
% We first solve the model with endogneous labor and then solve again with exogenous labor.
% We can then compare the policy functions and the aggregate assets and labor supply for the models
% with endogenous vs exogenous labor. We can see how endogenous labor reduces precautionary savings
% (there are still precautionary savings, which you would see by comparing the stochastic model with
% endogenous labor to the deterministic model with endogenous labor in the same manner as we did for
% exogenous labor in Life-Cycle Model 17, just not as much precautionary savings with endogenous labor
% as there were with exogenous labor).
%% How does VFI Toolkit think about this?
%
% One decision variable: h, labour hours worked
% One endogenous state variable: a, assets (total household savings)
% One stochastic exogenous state variable: z, an AR(1) process (in logs), idiosyncratic shock to labor productivity units
% Age: j
%% Begin setting up to use VFI Toolkit to solve
% Lets model agents from age 20 to age 100, so 81 periods
Params.agejshifter=19; % Age 20 minus one. Makes keeping track of actual age easy in terms of model age
Params.J=100-Params.agejshifter; % =81, Number of period in life-cycle
% Grid sizes to use
n_d=101; % Endogenous labour choice (fraction of time worked)
n_a=501; % Endogenous asset holdings
n_z=3; % Exogenous labor productivity units shock
N_j=Params.J; % Number of periods in finite horizon
%% Parameters
% Discount rate
Params.beta = 0.96;
% Preferences
Params.sigma = 2; % Coeff of relative risk aversion (curvature of consumption)
Params.eta = 1.5; % Curvature of leisure (This will end up being 1/Frisch elasty)
Params.psi = 10; % Weight on leisure
% Prices
Params.w=1; % Wage
Params.r=0.05; % Interest rate (0.05 is 5%)
% Demographics
Params.agej=1:1:Params.J; % Is a vector of all the agej: 1,2,3,...,J
Params.Jr=46;
% Pensions
Params.pension=0.3;
% Age-dependent labor productivity units
Params.kappa_j=[linspace(0.5,2,Params.Jr-15),linspace(2,1,14),zeros(1,Params.J-Params.Jr+1)];
% Exogenous shock process: AR1 on labor productivity units
Params.rho_z=0.9;
Params.sigma_epsilon_z=0.03;
% Conditional survival probabilities: sj is the probability of surviving to be age j+1, given alive at age j
% Most countries have calculations of these (as they are used by the government departments that oversee pensions)
% In fact I will here get data on the conditional death probabilities, and then survival is just 1-death.
% Here I just use them for the US, taken from "National Vital Statistics Report, volume 58, number 10, March 2010."
% I took them from first column (qx) of Table 1 (Total Population)
% Conditional death probabilities
Params.dj=[0.006879, 0.000463, 0.000307, 0.000220, 0.000184, 0.000172, 0.000160, 0.000149, 0.000133, 0.000114, 0.000100, 0.000105, 0.000143, 0.000221, 0.000329, 0.000449, 0.000563, 0.000667, 0.000753, 0.000823,...
0.000894, 0.000962, 0.001005, 0.001016, 0.001003, 0.000983, 0.000967, 0.000960, 0.000970, 0.000994, 0.001027, 0.001065, 0.001115, 0.001154, 0.001209, 0.001271, 0.001351, 0.001460, 0.001603, 0.001769, 0.001943, 0.002120, 0.002311, 0.002520, 0.002747, 0.002989, 0.003242, 0.003512, 0.003803, 0.004118, 0.004464, 0.004837, 0.005217, 0.005591, 0.005963, 0.006346, 0.006768, 0.007261, 0.007866, 0.008596, 0.009473, 0.010450, 0.011456, 0.012407, 0.013320, 0.014299, 0.015323,...
0.016558, 0.018029, 0.019723, 0.021607, 0.023723, 0.026143, 0.028892, 0.031988, 0.035476, 0.039238, 0.043382, 0.047941, 0.052953, 0.058457, 0.064494,...
0.071107, 0.078342, 0.086244, 0.094861, 0.104242, 0.114432, 0.125479, 0.137427, 0.150317, 0.164187, 0.179066, 0.194979, 0.211941, 0.229957, 0.249020, 0.269112, 0.290198, 0.312231, 1.000000];
% dj covers Ages 0 to 100
Params.sj=1-Params.dj(21:101); % Conditional survival probabilities
Params.sj(end)=0; % In the present model the last period (j=J) value of sj is actually irrelevant
% Warm glow of bequest
Params.warmglow1=0.3; % (relative) importance of bequests
Params.warmglow2=3; % bliss point of bequests (essentially, the target amount)
Params.warmglow3=Params.sigma; % By using the same curvature as the utility of consumption it makes it much easier to guess appropraite parameter values for the warm glow
%% Grids
% The ^3 means that there are more points near 0 and near 10. We know from
% theory that the value function will be more 'curved' near zero assets,
% and putting more points near curvature (where the derivative changes the most) increases accuracy of results.
a_grid=10*(linspace(0,1,n_a).^3)'; % The ^3 means most points are near zero, which is where the derivative of the value fn changes most.
% First, the AR(1) process z
[z_grid,pi_z]=discretizeAR1_FarmerToda(0,Params.rho_z,Params.sigma_epsilon_z,n_z);
z_grid=exp(z_grid); % Take exponential of the grid
[mean_z,~,~,statdist_z]=MarkovChainMoments(z_grid,pi_z); % Calculate the mean of the grid so as can normalise it
z_grid=z_grid./mean_z; % Normalise the grid on z (so that the mean of z is exactly 1)
% Grid for labour choice
h_grid=linspace(0,1,n_d)'; % Notice that it is imposing the 0<=h<=1 condition implicitly
% Switch into toolkit notation
d_grid=h_grid;
%% Now, create the return function
DiscountFactorParamNames={'beta','sj'};
% Notice we still use 'LifeCycleModel8_ReturnFn'
ReturnFn=@(h,aprime,a,z,w,sigma,psi,eta,agej,Jr,pension,r,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj) LifeCycleModel8_ReturnFn(h,aprime,a,z,w,sigma,psi,eta,agej,Jr,pension,r,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj)
%% Now solve the value function iteration problem, just to check that things are working before we go to General Equilbrium
disp('Test ValueFnIter')
vfoptions=struct(); % Just using the defaults.
tic;
[V, Policy]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid, pi_z, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
toc
%% Now, we want to graph Life-Cycle Profiles
%% Initial distribution of agents at birth (j=1)
% Before we plot the life-cycle profiles we have to define how agents are
% at age j=1. We will give them all zero assets.
jequaloneDist=zeros([n_a,n_z],'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,:)=statdist_z; % All agents start with zero assets, and the median shock
%% We now compute the 'stationary distribution' of households
% Start with a mass of one at initial age, use the conditional survival
% probabilities sj to calculate the mass of those who survive to next
% period, repeat. Once done for all ages, normalize to one
Params.mewj=ones(1,Params.J); % Marginal distribution of households over age
for jj=2:length(Params.mewj)
Params.mewj(jj)=Params.sj(jj-1)*Params.mewj(jj-1);
end
Params.mewj=Params.mewj./sum(Params.mewj); % Normalize to one
AgeWeightsParamNames={'mewj'}; % So VFI Toolkit knows which parameter is the mass of agents of each age
simoptions=struct(); % Use the default options
StationaryDist=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy,n_d,n_a,n_z,N_j,pi_z,Params,simoptions);
% Again, we will explain in a later model what the stationary distribution
% is, it is not important for our current goal of graphing the life-cycle profile
%% FnsToEvaluate are how we say what we want to graph the life-cycles of
% Like with return function, we have to include (h,aprime,a,z) as first
% inputs, then just any relevant parameters.
FnsToEvaluate.fractiontimeworked=@(h,aprime,a,z) h; % h is fraction of time worked
FnsToEvaluate.earnings=@(h,aprime,a,z,w,kappa_j) w*kappa_j*z*h; % w*kappa_j*z*h is the labor earnings (note: h will be zero when z is zero, so could just use w*kappa_j*h)
FnsToEvaluate.assets=@(h,aprime,a,z) a; % a is the current asset holdings
FnsToEvaluate.consumption=@(h,aprime,a,z,agej,Jr,w,kappa_j,r,pension) (agej<Jr)*(w*kappa_j*z*h+(1+r)*a-aprime)+(agej>=Jr)*(pension+(1+r)*a-aprime);
%% Calculate the life-cycle profiles
AgeConditionalStats=LifeCycleProfiles_FHorz_Case1(StationaryDist,Policy,FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid,simoptions);
%% Before changing model calculate PolicyVals
PolicyVals=PolicyInd2Val_Case1_FHorz(Policy,n_d,n_a,n_z,N_j,d_grid,a_grid,simoptions);
% And aggregate variables
AggVars=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist, Policy, FnsToEvaluate, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid,[],simoptions);
%% Solve endogenous labor supply again, but now with no shocks
store_n_z=n_z; % Need n_z later to do exogenous labor with shocks
n_z=1;
z_grid=1;
pi_z=1;
jequaloneDist=zeros([n_a,n_z],'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,1)=1;
% ReturnFn is unchanged
[V_noshock, Policy_noshock]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid, pi_z, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
StationaryDist_noshock=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy_noshock,n_d,n_a,n_z,N_j,pi_z,Params,simoptions);
% FnsToEvaluate are unchanged
AgeConditionalStats_noshock=LifeCycleProfiles_FHorz_Case1(StationaryDist_noshock,Policy_noshock,FnsToEvaluate,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid,simoptions);
PolicyVals_noshock=PolicyInd2Val_Case1_FHorz(Policy_noshock,n_d,n_a,n_z,N_j,d_grid,a_grid,simoptions);
AggVars_noshock=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist_noshock, Policy_noshock, FnsToEvaluate, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid,[],simoptions);
%% Parameter to make exogneous labor supply model have the same mean earnings as endogenous labor supply does.
% Households work a fraction of the time. Since the difference in earnings
% between exogenous and endogenous labor supply is just the multiplying by
% hours worked it follows that the endogenous labor supply model will
% have lower mean earnings.
% Note that the ratio is not given by E[h], because of composition effects
% (households with endogenous labor work more/less for certain exogenous
% shocks and at certain ages and asst levels)
%
% We will use a parameter to multiply the earnings with exogenous labor, so as to get the same mean earnings.
Params.meanearningsratio=0.4767/0.9682;
% First I ran this code with meanearningsratio=1, then based on the actual
% resulting ratio of mean earnings (the codes print the mean earnings of
% each model to screen near the end, 0.4767 was mean earnings for model with endogenous labor supply,
% 0.9682 was mean earnings for model with exogenous labor supply) I changed it to the current value.
%% Solve a second time, but this time with exogenous labor supply
% Turn shocks back on
n_z=store_n_z;
[z_grid,pi_z]=discretizeAR1_FarmerToda(0,Params.rho_z,Params.sigma_epsilon_z,n_z);
z_grid=exp(z_grid); % Take exponential of the grid
[mean_z,~,~,statdist_z]=MarkovChainMoments(z_grid,pi_z); % Calculate the mean of the grid so as can normalise it
z_grid=z_grid./mean_z; % Normalise the grid on z (so that the mean of z is exactly 1)
jequaloneDist=zeros([n_a,n_z],'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,:)=statdist_z; % All agents start with zero assets, and the median shock
% Switch to exogenous labor supply
n_d=0; % None
d_grid=[]; % No decision variables
% Change return function
ReturnFn=@(aprime,a,z,w,sigma,agej,Jr,pension,r,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj,meanearningsratio) LifeCycleModel18B_ReturnFn(aprime,a,z,w,sigma,agej,Jr,pension,r,kappa_j,warmglow1,warmglow2,warmglow3,beta,sj,meanearningsratio)
[V_exo, Policy_exo]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid, pi_z, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
StationaryDist_exo=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy_exo,n_d,n_a,n_z,N_j,pi_z,Params,simoptions);
% Change FnsToEvaluate
FnsToEvaluate_exo.earnings=@(aprime,a,z,w,kappa_j,meanearningsratio) meanearningsratio*w*kappa_j*z; % z is the 'stochastic endowment' or 'exogenous earnings'
FnsToEvaluate_exo.assets=@(aprime,a,z) a; % a is the current asset holdings
FnsToEvaluate_exo.consumption=@(aprime,a,z,agej,Jr,w,kappa_j,r,pension,meanearningsratio) (agej<Jr)*(meanearningsratio*w*kappa_j*z+(1+r)*a-aprime)+(agej>=Jr)*(pension+(1+r)*a-aprime);
AgeConditionalStats_exo=LifeCycleProfiles_FHorz_Case1(StationaryDist_exo,Policy_exo,FnsToEvaluate_exo,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid,simoptions);
PolicyVals_exo=PolicyInd2Val_FHorz_Case1(Policy_exo,n_d,n_a,n_z,N_j,d_grid,a_grid);
AggVars_exo=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist_exo, Policy_exo, FnsToEvaluate_exo, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid,[],simoptions);
%% Solve a third time, this time with exogenous labor supply and no shocks (deterministic model)
n_z=1;
z_grid=1;
pi_z=1;
jequaloneDist=zeros([n_a,n_z],'gpuArray'); % Put no households anywhere on grid
jequaloneDist(1,1)=1;
[V_exonoshock, Policy_exonoshock]=ValueFnIter_Case1_FHorz(n_d,n_a,n_z,N_j, d_grid, a_grid, z_grid, pi_z, ReturnFn, Params, DiscountFactorParamNames, [], vfoptions);
StationaryDist_exonoshock=StationaryDist_FHorz_Case1(jequaloneDist,AgeWeightsParamNames,Policy_exonoshock,n_d,n_a,n_z,N_j,pi_z,Params,simoptions);
% FnsToEvaluate_exo are unchangecd
AgeConditionalStats_exonoshock=LifeCycleProfiles_FHorz_Case1(StationaryDist_exonoshock,Policy_exonoshock,FnsToEvaluate_exo,Params,[],n_d,n_a,n_z,N_j,d_grid,a_grid,z_grid,simoptions);
PolicyVals_exonoshock=PolicyInd2Val_FHorz_Case1(Policy_exonoshock,n_d,n_a,n_z,N_j,d_grid,a_grid);
AggVars_exonoshock=EvalFnOnAgentDist_AggVars_FHorz_Case1(StationaryDist_exonoshock, Policy_exonoshock, FnsToEvaluate_exo, Params, [], n_d, n_a, n_z,N_j, d_grid, a_grid, z_grid,[],simoptions);
%% Plot the savings policies at low asset levels for the three models to see precautionary spending
zind=2; % This will be the median
% Plot the aprime policy as a function (of assets) for a given age (I do a few for different ages)
figure(1)
subplot(3,1,1); plot(a_grid,PolicyVals(2,:,1,1),a_grid,PolicyVals(2,:,zind,1),a_grid,PolicyVals(2,:,end,1),a_grid,PolicyVals_noshock(1,:,1,1)) % j=1
title('Policy for aprime at age j=1 (at low asset levels)')
legend('endo: min z','endo: median z','endo: max z','endo, no shock')
xlim([0,0.1])
subplot(3,1,2); plot(a_grid,PolicyVals_exo(1,:,1,1),a_grid,PolicyVals_exo(1,:,zind,1),a_grid,PolicyVals_exo(1,:,end,1),a_grid,PolicyVals_exonoshock(1,:,1,1)) % j=1
title('Policy for aprime at age j=1 (at low asset levels)')
legend('exo: min z','exo: median z','exo: max z','exo, no shock')
xlim([0,0.1])
subplot(3,1,3); plot(a_grid,PolicyVals(2,:,zind,1),a_grid,PolicyVals_exo(1,:,zind,1),a_grid,PolicyVals_noshock(1,:,1,1),a_grid,PolicyVals_exonoshock(1,:,1,1)) % j=1
title('Policy for aprime at age j=1 (at low asset levels)')
legend('endo: median z','exo: median z','endo, no shock','exo, no shock')
xlim([0,0.1])
% Plot the aprime policy as a function (of assets) for a given age (I do a few for different ages)
figure(2)
subplot(3,1,1); plot(a_grid,PolicyVals(2,:,1,20),a_grid,PolicyVals(2,:,zind,20),a_grid,PolicyVals(2,:,end,20),a_grid,PolicyVals_noshock(1,:,1,20)) % j=20
title('Policy for aprime at age j=20 (at low asset levels)')
legend('endo: min z','endo: median z','endo: max z','endo, no shock')
xlim([0,0.1])
subplot(3,1,2); plot(a_grid,PolicyVals_exo(1,:,1,20),a_grid,PolicyVals_exo(1,:,zind,20),a_grid,PolicyVals_exo(1,:,end,20),a_grid,PolicyVals_exonoshock(1,:,1,20)) % j=20
title('Policy for aprime at age j=20 (at low asset levels)')
legend('exo: min z','exo: median z','exo: max z','exo, no shock')
xlim([0,0.1])
subplot(3,1,3); plot(a_grid,PolicyVals(2,:,zind,20),a_grid,PolicyVals_exo(1,:,zind,20),a_grid,PolicyVals_noshock(1,:,1,20),a_grid,PolicyVals_exonoshock(1,:,1,20)) % j=20
title('Policy for aprime at age j=20 (at low asset levels)')
legend('endo: median z','exo: median z','endo, no shock','exo, no shock')
xlim([0,0.1])
% Note: Only younger ages are plotted here. For the reasons explained in Life-Cycle
% Plot the aprime policy as a function (of assets) for a given age (I do a few for different ages)
figure(3)
subplot(3,1,1); plot(a_grid,PolicyVals(2,:,1,40),a_grid,PolicyVals(2,:,zind,40),a_grid,PolicyVals(2,:,end,40),a_grid,PolicyVals_noshock(1,:,1,40)) % j=20
title('Policy for aprime at age j=40 (at low asset levels)')
legend('endo: min z','endo: median z','endo: max z','endo, no shock')
xlim([0,0.1])
subplot(3,1,2); plot(a_grid,PolicyVals_exo(1,:,1,40),a_grid,PolicyVals_exo(1,:,zind,40),a_grid,PolicyVals_exo(1,:,end,40),a_grid,PolicyVals_exonoshock(1,:,1,40)) % j=20
title('Policy for aprime at age j=40 (at low asset levels)')
legend('exo: min z','exo: median z','exo: max z','exo, no shock')
xlim([0,0.1])
subplot(3,1,3); plot(a_grid,PolicyVals(2,:,zind,40),a_grid,PolicyVals_exo(1,:,zind,40),a_grid,PolicyVals_noshock(1,:,1,40),a_grid,PolicyVals_exonoshock(1,:,1,40)) % j=20
title('Policy for aprime at age j=40 (at low asset levels)')
legend('endo: median z','exo: median z','endo, no shock','exo, no shock')
xlim([0,0.1])
figure(4)
subplot(3,1,1); plot(a_grid,PolicyVals(1,:,1,1),a_grid,PolicyVals(1,:,zind,1),a_grid,PolicyVals(1,:,end,1),a_grid,PolicyVals_noshock(1,:,1,1)) % j=20
title('Policy for h at age j=1 (at low asset levels)')
legend('endo: min z','endo: median z','endo: max z','endo, no shock')
xlim([0,0.1])
subplot(3,1,2); plot(a_grid,PolicyVals(1,:,1,20),a_grid,PolicyVals(1,:,zind,20),a_grid,PolicyVals(1,:,end,20),a_grid,PolicyVals_noshock(1,:,1,20)) % j=20
title('Policy for h at age j=20 (at low asset levels)')
legend('endo: min z','endo: median z','endo: max z','endo, no shock')
xlim([0,0.1])
subplot(3,1,3); plot(a_grid,PolicyVals(1,:,1,40),a_grid,PolicyVals(1,:,zind,40),a_grid,PolicyVals(1,:,end,40),a_grid,PolicyVals_noshock(1,:,1,40)) % j=40
title('Policy for h at age j=40 (at low asset levels)')
legend('endo: min z','endo: median z','endo: max z','endo, no shock')
xlim([0,0.1])
% Using labor supply at low asset levels as an alternative to precautionary labor supply
%%
fprintf(' \n')
fprintf('Endogenous labor supply: \n')
fprintf(' Aggregate labor supply: %8.4f \n',AggVars.fractiontimeworked.Mean)
fprintf(' Aggregate earnings: %8.4f \n',AggVars.earnings.Mean)
fprintf(' Aggregate assets: %8.4f \n',AggVars.assets.Mean)
fprintf(' Capital/Income Ratio: %8.4f \n',AggVars.assets.Mean/AggVars.earnings.Mean)
fprintf('Endogenous labor supply, no shocks: \n')
fprintf(' Aggregate labor supply: %8.4f \n',AggVars_noshock.fractiontimeworked.Mean)
fprintf(' Aggregate earnings: %8.4f \n',AggVars_noshock.earnings.Mean)
fprintf(' Aggregate assets: %8.4f \n',AggVars_noshock.assets.Mean)
fprintf(' Capital/Income Ratio: %8.4f \n',AggVars_noshock.assets.Mean/AggVars_noshock.earnings.Mean)
fprintf('Exogenous labor supply: \n')
fprintf(' Aggregate earnings: %8.4f \n',AggVars_exo.earnings.Mean)
fprintf(' Aggregate assets: %8.4f \n',AggVars_exo.assets.Mean)
fprintf(' Capital/Income Ratio: %8.4f \n',AggVars_exo.assets.Mean/AggVars_exo.earnings.Mean)
fprintf('Exogenous labor supply, no shocks: \n')
fprintf(' Aggregate earnings: %8.4f \n',AggVars_exonoshock.earnings.Mean)
fprintf(' Aggregate assets: %8.4f \n',AggVars_exonoshock.assets.Mean)
fprintf(' Capital/Income Ratio: %8.4f \n',AggVars_exonoshock.assets.Mean/AggVars_exonoshock.earnings.Mean)
fprintf(' \n')
fprintf(' \n')
fprintf('Ratio of earnings of endogenous labor supply model to exogenous labor supply model: %8.4f \n', AggVars.earnings.Mean/AggVars_exo.earnings.Mean)