-
Notifications
You must be signed in to change notification settings - Fork 0
/
cimoi-prenu-cusku-ctaipe.lagda
414 lines (307 loc) · 14.7 KB
/
cimoi-prenu-cusku-ctaipe.lagda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
\documentclass{report}
\usepackage{ar}
\usepackage[bw]{agda}
\usepackage{ifsym}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{parskip}
\usepackage{mathabx}
\usepackage{unicode-math}
\usepackage{newunicodechar}
\newtheorem{thm}{Theorem}
\renewcommand\abstractname{le me'oi .abstract.}
\newunicodechar{∀}{\ensuremath{\mathnormal{\forall}}}
\newcommand\sds{\spacefactor\sfcode`.\ \space}
\newcommand\texmidnoi\texttt
\newcommand\Sym\AgdaSymbol
\newcommand\D\AgdaDatatype
\newcommand\F\AgdaFunction
\newcommand\B\AgdaBound
\title{le ctaipe be le su'u la .varik.\ cu cimoi prenu pe'a cusku / The Proof of that VARIK Communicates in the Third Person}
\author{la .varik.\ .VALefor.}
\begin{document}
\maketitle
\begin{abstract}
\paragraph{la .lojban.}
ni'o vasru le velcki be le ctaipe be le su'u ko'a goi la .varik.\ cu cimoi prenu pe'a cusku kei be'o be'o je le velcki be le ctaipe be le su'u ko'a te selneimau lo nu ko'a cimoi prenu pe'a cusku kei lo nu ko'a ke pamoi ja remoi ke'e prenu pe'a cusku
\paragraph{English}
The thing contains the definition of the proof of that VARIK communicates in the third person. Additionally, the thing contains the definition of the proof of that VARIK prefers (over that VARIK communicates in the first (or third) person) that VARIK communicates in the third person.
\end{abstract}
\tableofcontents
\chapter{le torveki / The Summary}
\section{le me'oi .disclaimer.}
\paragraph{la .lojban.}
ni'o pilno la'oi .\texmidnoi{section}.\ jenai la'oi .\texmidnoi{paragraph}.\ ki'u le su'u lo tcita be lo jufmei cu smimlu lo tcita be lo velcki be lo se ctaipe
\paragraph{English}
That (labels of paragraphs resemble labels of definitions of proofs) justifies using \texmidnoi{subsection} and not \texmidnoi{paragraph}.
\section{la .lojban.}
ni'o la .varik.\ cu cimoi prenu pe'a cusku ni'i le su'u\ldots
\begin{itemize}
\item ga je la .varik.\ cu bridi jufra cusku gi
\item ga je me'oi .minimise.\ la .varik.\ le ka ce'u cusku lo mu'oi glibau.\ referentially ambiguous .glibau.\ gi
\item ro da zo'u ga janai da cimoi prenu pe'a cusku gi ga je da cusku lo bridi jufra gi me'oi .minimise.\ da le ka ce'u cusku lo mu'oi glibau.\ referentially ambiguous .glibau.
\end{itemize}
.i ji'a la .varik.\ cu te selneimau ko'a goi lo nu la .varik.\ cu cimoi prenu pe'a cusku kei ko'e goi lo nu la .varik.\ cu ke pamoi ja remoi ke'e prenu pe'a cusku kei ni'i le su'u\ldots
\begin{itemize}
\item ga je ko'a zmadu ko'e le ka ce'u frili la .varik.\ kei je le ka la .varik.\ cu nelci lo jalge be ce'u gi
\item ro da zo'u ro de zo'u da zmadu de le ka ce'u selnei la .varik.\ kei janai le ka ce'u frili la .varik.\ kei je bo le ka la .varik.\ cu nelci lo jalge be ce'u
\end{itemize}
\section{English}
\begin{thm}
VARIK communicates in the third person.
\end{thm}
\begin{proof}
${}$
For all $A$, if $A$ communicates via predicate-based sentences, then if minimised is the extent of that referentially ambiguous are the things which are written/spoken by $A$, then $A$ communicates in the third person.
VARIK communicates via predicate-based sentences.
Minimised is the extent of that referentially ambiguous are the things which are written/spoken by VARIK.
Therefore, VARIK communicates in the third person.
\end{proof}
\begin{thm}
VARIK prefers (over that (VARIK communicates in the first person) and that VARIK communicates in the second person) that VARIK communicates in the third person.
\end{thm}
\begin{proof}
${}$
$f_1$ is some event of that VARIK communicates in the first person.
$f_2$ is some event of that VARIK communicates in the second person.
$f_3$ is some event of that VARIK communicates in the third person.
For all $A$, for all $B$, if VARIK finds that the ease of $A$ exceeds the ease of $B$, then if the extent (of that VARIK likes the result of $A$) exceeds the extent of that VARIK likes the result of $B$, then VARIK prefers (over $B$) $A$.
VARIK finds that the ease of $f_3$ exceeds the ease (of $f_1$) and the ease of $f_2$.
The extent (of that VARIK likes the result of $f_3$) exceeds the extent (of that VARIK likes the result of $f_1$) and the extent of that VARIK likes the result of $f_1$.
For all $A$, for all $B$, for all $C$, for all prenu $p$, ($p$ prefers (over $B$) $A$, and $p$ prefers (over $C$) $A$) iff $p$ prefers (over $B$ and $C$) $p$.
Therefore, VARIK prefers (over $f_1$ and $f_2$) $f_3$.
\end{proof}
\chapter{le mapti be ro le re ctaipe / The Things which are Relevant to Both Proofs}
\section{le vrici / The Miscellaneous}
\begin{code}
open import Function
using (
_$_
)
open import Data.Product
using (
_×_;
_,_
)
open import Relation.Nullary
using (
¬_
)
\end{code}
\section{le jicmu / The Basic}
\subsection{la'oi .\AgdaPostulate{Prenu}.}
\paragraph{la .lojban.}
ni'o ro da zo'u da ctaipe la'oi .\AgdaPostulate{Prenu}.\ jo cu prenu
\paragraph{English}
For all $A$, \AgdaPostulate{Prenu} is the type of $A$ iff $A$ is a prenu.
\begin{code}
postulate Prenu : Set
\end{code}
\section{le prenu / The Prenu}
\subsection{la'o zoi.\ \AgdaPostulate{la-varik}\ .zoi.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \AgdaPostulate{la-varik}\ .zoi.\ du la .varik.\ .VALefor.\ poi ke'a se gugde le merko zi'o je cu cmacypre je cu cusku dei je cu nelci le .else poi la'o glibau.\ Limp Bizkit .glibau.\ zbasu ke'a xi re
\paragraph{English}
\AgdaPostulate{la-varik} is the VARIK VALEFOR which is an American, is a mathematician, writes the current sentence, and likes the songs which are created by Limp Bizkit.
\begin{code}
postulate la-varik : Prenu
\end{code}
\chapter{le ctaipe be le su'u la .varik.\ cu cimoi prenu pe'a cusku / The Proof of that VARIK Communicates in the Third Person}
\begin{code}
module Cuskyctaipe where
\end{code}
\section{le bridi / The Predicates}
\subsection{la'o zoi.\ \AgdaPostulate{nargaubasyvla-cusku-fa}\ .zoi.}
\paragraph{la .lojban.}
ni'o ga jo ctaipe la'o zoi.\ \AgdaPostulate{nargaubasyvla-cusku-fa}\ \B a\ .zoi.\ gi su'o da zo'u da nu la'o zoi.\ \B a\ .zoi.\ cusku lo nargaubasyvla jenai cu sitsku
\paragraph{English}
A proof of \AgdaPostulate{nargaybasyvla-cusku-fa}\ \B a\ exists iff some event of that \B a\ uses nargaubasyvla is not an event of that \B a\ quotes.
\begin{code}
postulate nargaubasyvla-cusku-fa : Prenu → Set
\end{code}
\subsection{la'o zoi.\ \AgdaPostulate{cimoi-prenu-cusku-fa}\ .zoi.}
\paragraph{la .lojban.}
ni'o ga jo ctaipe la'o zoi.\ \AgdaPostulate{cimoi-prenu-cusku-fa}\ \B a\ .zoi.\ gi la'o zoi.\ \B a\ .zoi.\ cimoi prenu pe'a cusku
\paragraph{English}
A proof of \AgdaPostulate{cimoi-prenu-cusku-fa}\ \B a\ exists iff \B a\ communicates in the third person.
\begin{code}
postulate cimoi-prenu-cusku-fa : Prenu → Set
\end{code}
\subsection{la'o zoi.\ \AgdaPostulate{jufra-cusku-fa}\ .zoi.}
\paragraph{la .lojban.}
ni'o ga jo ctaipe la'o zoi.\ \AgdaPostulate{jufra-cusku-fa}\ \B a\ .zoi.\ gi la'o zoi.\ \B a\ .zoi.\ cusku lo bridi jufra
\paragraph{English}
A proof of \AgdaPostulate{jufra-cusku-fa}\ \B a\ exists iff \B a\ communicates via predicate-based sentences.
\begin{code}
postulate jufra-cusku-fa : Prenu → Set
\end{code}
\subsection{la'o zoi.\ \AgdaPostulate{mleskutolvrici-fa}\ .zoi.}
\paragraph{la .lojban.}
ni'o ga jo ctaipe la'o zoi.\ \AgdaPostulate{mleskutolvrici-fa}\ \B a\ .zoi.\ gi me'oi .minimise.\ la'o zoi.\ \B a\ .zoi.\ le ka ce'u cusku lo mu'oi glibau.\ referentially ambiguous .glibau.
\paragraph{English}
A proof of \AgdaPostulate{mleskutolvrici-fa}\ \B a\ exists iff minimised is the extent of that referentially ambiguous are the things which are written/spoken by \B a.
\begin{code}
postulate mleskutolvrici-fa : Prenu → Set
\end{code}
\section{le fancu / The Functions}
\subsection{la'oi .\AgdaPostulate{mleskunargaubasyvla}.}
\paragraph{la .lojban.}
ni'o ro da zo'u ga janai da cusku lo nargaubasyvla naja cu sitsku gi me'oi .minimise.\ da le ka ce'u cusku lo mu'oi glibau.\ referentially ambiguous .glibau.
\paragraph{English}
For all $A$, if minimised is the extent of that referentially ambiguous are the things which are written/spoken by $A$, then every event (of that $A$ uses nargaubasyvla) is an event of that $A$ quotes.
\begin{code}
postulate
mleskunargaubasyvla : {z : Prenu}
→ mleskutolvrici-fa z
→ ¬ (nargaubasyvla-cusku-fa z)
\end{code}
\subsection{la'o zoi.\ \AgdaPostulate{nargaubasyvla-cusku}\ .zoi.}
\paragraph{la .lojban.}
ni'o ro da poi ke'a prenu zo'u ga janai da cimoi prenu pe'a cusku gi ga je da cusku lo bridi jufra gi da cusku lo nargaubasyvla naja cu sitsku
\paragraph{English}
For all prenu $A$, if $A$ communicates via predicate-based sentences, then if every event (of that $A$ uses nargaubasyvla) is an event of that $A$ quotes, then $A$ communicates in the ``third person''.
\begin{code}
postulate
nargaubasyvla-cusku : {z : Prenu}
→ jufra-cusku-fa z
→ ¬ (nargaubasyvla-cusku-fa z)
→ cimoi-prenu-cusku-fa z
\end{code}
\section{le ctaipe / The Proof}
\paragraph{la .lojban.}
ni'o le me'oi .section.\ cu vasru le velcki be ko'a goi le ctaipe bei bau la'oi .Agda.\sds .i la .varik.\ cu na jinvi le du'u sarcu fa lo nu la .varik.\ cu ciksi ko'a bau la .lojban.
\paragraph{English}
The section contains the Agda definition of the proof. VARIK not opines that necessary is that VARIK provides an English explanation of the Agda definition of the proof.
\begin{code}
la-cimois : cimoi-prenu-cusku-fa la-varik
la-cimois = nargaubasyvla-cusku le-suvjufsku le-suvnarpli
where
postulate le-suvmlesmu : mleskutolvrici-fa la-varik
postulate le-suvjufsku : jufra-cusku-fa la-varik
le-suvnarpli : ¬ (nargaubasyvla-cusku-fa la-varik)
le-suvnarpli = mleskunargaubasyvla le-suvmlesmu
\end{code}
\chapter{le ctaipe be le su'u selneimau / The Proof of that VARIK Prefers}
\begin{code}
module Selneimauctaipe where
\end{code}
\section{le jicmu / The Basic}
\subsection{la'oi .\AgdaPostulate{Fasnu}.}
\paragraph{la .lojban.}
ni'o ro da zo'u da ctaipe la'oi .\AgdaPostulate{Fasnu}.\ jo cu fasnu
\paragraph{English}
For all $A$, \AgdaPostulate{Prenu} is the type of $A$ iff $A$ is an event.
\begin{code}
postulate Fasnu : Set
\end{code}
\subsection{la'oi .\AgdaPostulate{Selckaji}.}
\paragraph{la .lojban.}
ni'o ro da zo'u da ctaipe la'oi .\AgdaPostulate{Selckaji}.\ jo cu se ckaji
\paragraph{English}
For all $A$, \AgdaPostulate{Selckaji} is the type of $A$ iff $A$ is a property/quality/whatever.
\begin{code}
postulate Selckaji : Set
\end{code}
\section{le fasnu / The Events}
\newcommand\fsn{\AgdaPostulate{la-pamoicuskus}}
\subsection{la'o zoi.\ \fsn\ .zoi.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \fsn\ .zoi.\ nu la .varik.\ cu pamoi prenu pe'a cusku
\paragraph{English}
\fsn\ is an event of that VARIK communicates in the first person.
\begin{code}
postulate la-pamoicuskus : Fasnu
\end{code}
\renewcommand\fsn{\AgdaPostulate{la-remoicuskus}}
\subsection{la'o zoi.\ \fsn\ .zoi.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \fsn\ .zoi.\ nu la .varik.\ cu remoi prenu pe'a cusku
\paragraph{English}
\fsn\ is an event of that VARIK communicates in the second person.
\begin{code}
postulate la-remoicuskus : Fasnu
\end{code}
\renewcommand\fsn{\AgdaPostulate{la-cimoicuskus}}
\subsection{la'o zoi.\ \fsn\ .zoi.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \fsn\ .zoi.\ nu la .varik.\ cu cimoi prenu pe'a cusku
\paragraph{English}
\fsn\ is an event of that VARIK communicates in the third person.
\begin{code}
postulate la-cimoicuskus : Fasnu
\end{code}
\section{le se ckaji / The Properties}
\renewcommand\fsn{\AgdaPostulate{kafrilis}}
\subsection{la'o zoi.\ \fsn\ .zoi.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \fsn\ \B a\ .zoi.\ ka ce'u frili la'oi .\B{a}.
\paragraph{English}
For all $A$, $A$ displays/exhibits \fsn\ iff \B a finds that easy (for \B a) is $A$.
\begin{code}
postulate kafrilis : Prenu → Selckaji
\end{code}
\renewcommand\fsn{\AgdaPostulate{kanelcis}}
\subsection{la'o zoi.\ \fsn\ .zoi.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \fsn\ \B a\ .zoi.\ ka la'oi .\B{a}.\ nelci ce'u
\paragraph{English}
For all $A$, $A$ displays/exhibits \fsn\ \B a\ iff \B a likes $A$.
\begin{code}
postulate kanelcis : Prenu → Selckaji
\end{code}
\section{le bridi / The Predicates}
\subsection{la'o zoi.\ \AgdaPostulate{zmadu-fa}\ .zoi.}
\paragraph{la .lojban.}
ni'o ga jo ctaipe la'o zoi.\ \AgdaPostulate{zmadu-fa} \B a \B b \B c\ .zoi.\ gi la'oi .\B{a}.\ zmadu la'oi .\B{b}.\ la'oi .\B{c}.
\paragraph{English}
A proof of \AgdaPostulate{zmadu-fa} \B a \B b \B c\ exists iff the extent (of that \B a\ exhibits/possesses/displays \B c) exceeds the extent of that \B b\ exhibits/possesses/displays \B b.
\begin{code}
postulate
zmadu-fa : ∀ {a b} → {A : Set a} → {B : Set b}
→ A → B → Selckaji → Set
\end{code}
\section{le fancu / The Functions}
\subsection{la'oi .\AgdaPostulate{jalge}.}
\paragraph{la .lojban.}
ni'o la'o zoi.\ \AgdaPostulate{jalge} \B a\ .zoi.\ jalge la'o zoi.\ \B a\ .zoi.
\paragraph{English}
\AgdaPostulate{jalge} \B a\ is the result/outcome of \B a.
\begin{code}
postulate jalge : ∀ {a} → {A : Set a} → A → Fasnu
\end{code}
\subsection{la'oi .\F{frijalnei}.}
\paragraph{la .lojban.}
ni'o ro da zo'u ro de zo'u da zmadu de le ka ce'u selnei la .varik.\ kei janai le ka ce'u frili la .varik.\ kei je bo le ka la .varik.\ cu nelci lo jalge be ce'u
\paragraph{English}
For all $A$, if VARIK finds that the ease of $A$ exceeds the ease of $B$, then if VARIK prefers (over the result of $A$) the result of $B$, then VARIK prefers (over $B$) $A$.
\begin{code}
postulate
frijalnei : ∀ {a b} → {A : Set a} → {B : Set b}
→ {p : A} → {r : B}
→ zmadu-fa p r $ kafrilis la-varik
→ zmadu-fa (jalge p) (jalge r) $ kanelcis la-varik
→ zmadu-fa p r $ kanelcis la-varik
\end{code}
\section{le ctaipe / The Proof}
\paragraph{la .lojban.}
ni'o le me'oi .section.\ cu vasru le velcki be ko'a goi le ctaipe bei bau la'oi .Agda.\sds .i la .varik.\ cu na jinvi le du'u sarcu fa lo nu la .varik.\ cu ciksi ko'a bau la .lojban.
\paragraph{English}
The section contains the Agda definition of the proof\@. VARIK not opines that necessary is that VARIK provides an English explanation of the Agda definition of the proof.
\begin{code}
la-recimois : let la-kin = kanelcis la-varik in
(_×_
(zmadu-fa la-cimoicuskus la-pamoicuskus la-kin)
(zmadu-fa la-cimoicuskus la-remoicuskus la-kin))
la-recimois = frijalnei pif pij , frijalnei rif rij
where
j = jalge
n = kanelcis la-varik
f = kafrilis la-varik
postulate
pij : zmadu-fa (jalge la-cimoicuskus)(jalge la-pamoicuskus) n
pif : zmadu-fa la-cimoicuskus la-pamoicuskus f
rij : zmadu-fa (jalge la-cimoicuskus) (jalge la-remoicuskus) n
rif : zmadu-fa la-cimoicuskus la-remoicuskus f
\end{code}
\end{document}