Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ATT-RNN RuntimeError: invalid argument 0: Tensors must have same number of dimensions: got 2 and 3 at /opt/conda/conda-bld/pytorch_1518238409320/work/torch/lib/THC/generic/THCTensorMath.cu:102 #7

Open
monajalal opened this issue Mar 9, 2018 · 0 comments

Comments

@monajalal
Copy link

How would you run the code for ATT-RNN model?

python train.py --batch-size 20 --rnn_type GRU --cuda --gpu 1 --lr 0.0001 --mdl ATT-RNN --clip_norm 1 --opt Adam --epochs 50/scratch/sjn-p2/anaconda/anaconda2/lib/python2.7/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
Using TensorFlow backend.
There are 2 CUDA devices
Setting torch GPU to 1
Using device:1 
Stored Environment:['term_len', 'word_index', 'glove', 'max_len', 'train', 'dev', 'test', 'index_word']
Loaded environment
Creating Model...
Setting Pretrained Embeddings
Initialized GRU model
Starting training
Namespace(aggregation='mean', attention_width=5, batch_size=20, clip_norm=1, cuda=True, dataset='Restaurants', dev=1, dropout_prob=0.5, embedding_size=300, epochs=50, eval=1, gpu=1, hidden_layer_size=300, l2_reg=0.0, learn_rate=0.0001, log=1, maxlen=0, mode='term', model_type='ATT-RNN', opt='Adam', pretrained=1, rnn_direction='uni', rnn_layers=1, rnn_size=300, rnn_type='GRU', seed=1111, term_model='mean', toy=False, trainable=1)
========================================================================
/scratch2/debate_tweets/sentiment/pytorch_sentiment_rnn/models/attention.py:50: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
  a = self.softmax(a)
Traceback (most recent call last):
  File "train.py", line 345, in <module>
    exp.train()
  File "train.py", line 328, in train
    loss = self.train_batch(i)
  File "train.py", line 300, in train_batch
    output, hidden = self.mdl(sentence, hidden)
  File "/scratch/sjn-p2/anaconda/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 357, in __call__
    result = self.forward(*input, **kwargs)
  File "/scratch2/debate_tweets/sentiment/pytorch_sentiment_rnn/models/rnn.py", line 44, in forward
    output = self.AttentionLayer(output, attention_width=self.args.attention_width)
  File "/scratch/sjn-p2/anaconda/anaconda2/lib/python2.7/site-packages/torch/nn/modules/module.py", line 357, in __call__
    result = self.forward(*input, **kwargs)
  File "/scratch2/debate_tweets/sentiment/pytorch_sentiment_rnn/models/attention.py", line 67, in forward
    results = torch.cat((results,output),0)
RuntimeError: invalid argument 0: Tensors must have same number of dimensions: got 2 and 3 at /opt/conda/conda-bld/pytorch_1518238409320/work/torch/lib/THC/generic/THCTensorMath.cu:102

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant