-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
61 lines (50 loc) · 1.69 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""Training latent semantic analysis model."""
import pickle
import warnings
from pathlib import Path
import polars as pl
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfTransformer
from database import PagilaDB
# turn off warning for conversion without column names
warnings.filterwarnings(action="ignore", category=UserWarning)
# set up database connection and run required queries
postgres_db = PagilaDB()
rentals = postgres_db.run_sql_file("queries/all_rentals.sql")
cids = postgres_db.run_query("select customer_id from customer")[:, 0]
fids = postgres_db.run_query("select film_id from film")[:, 0]
# left join with all possible combinations
full_df = (
pl.DataFrame(
{
"customer_id": [cids],
"film_id": [fids],
}
)
.explode("customer_id")
.explode("film_id")
.join(rentals, on=["customer_id", "film_id"], how="left")
.fill_null(0)
)
# pivot wider to create a count matrix
rental_matrix = full_df.pivot(
values="n",
index="customer_id",
columns="film_id",
aggregate_function="sum",
)
# remove customers that did not rent anything
rental_matrix = rental_matrix.filter(
pl.sum_horizontal(pl.exclude("customer_id")) > 0
)
# transform to tfidf matrix
tfidf_transformer = TfidfTransformer()
rental_matrix_tfidf = tfidf_transformer.fit_transform(rental_matrix[:, 1:])
# Latent semantic analysis
model = TruncatedSVD(n_components=20)
model.fit(rental_matrix_tfidf)
# store model
with Path("model/tfidf_transformer.pkl").open("wb") as trf_file:
pickle.dump(tfidf_transformer, file=trf_file)
with Path("model/model.pkl").open("wb") as mod_file:
pickle.dump(model, file=mod_file)