-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpytorch_dqn_atari.py
351 lines (270 loc) · 12.2 KB
/
pytorch_dqn_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import time
from datetime import datetime
import gymnasium as gym
import numpy as np
import torch
from torch import nn, optim
from torch.nn.functional import mse_loss
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--env_id", type=str, default="ALE/Pong-v5")
parser.add_argument("--total_timesteps", type=int, default=10_000_000)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--buffer_size", type=int, default=600_000)
parser.add_argument("--learning_rate", type=float, default=2.5e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--eps_end", type=float, default=0.05)
parser.add_argument("--eps_start", type=int, default=1)
parser.add_argument("--eps_decay", type=int, default=300_000)
parser.add_argument("--learning_start", type=int, default=50_000)
parser.add_argument("--train_frequency", type=int, default=4)
parser.add_argument("--target_update_frequency", type=int, default=10_000)
parser.add_argument("--cpu", action="store_true")
parser.add_argument("--capture_video", action="store_true")
parser.add_argument("--wandb", action="store_true")
parser.add_argument("--seed", type=int, default=0)
args = parser.parse_args()
args.device = torch.device("cpu" if args.cpu or not torch.cuda.is_available() else "cuda")
return args
def make_env(env_id, capture_video=False, run_dir="."):
def thunk():
if capture_video:
env = gym.make(
env_id,
frameskip=1,
full_action_space=False,
repeat_action_probability=0.0,
render_mode="rgb_array",
)
env = gym.wrappers.RecordVideo(
env=env,
video_folder=f"{run_dir}/videos",
episode_trigger=lambda x: x,
disable_logger=True,
)
else:
env = gym.make(env_id, frameskip=1, full_action_space=False, repeat_action_probability=0.0)
env = gym.wrappers.RecordEpisodeStatistics(env)
env = gym.wrappers.AtariPreprocessing(env)
env = gym.wrappers.FrameStack(env, 4)
return env
return thunk
def get_exploration_prob(eps_start, eps_end, eps_decay, step):
return eps_end + (eps_start - eps_end) * np.exp(-1.0 * step / eps_decay)
class ReplayBuffer:
def __init__(self, buffer_size, batch_size, observation_shape, numpy_rng, device):
self.states = np.zeros((buffer_size, *observation_shape), dtype=np.int8)
self.actions = np.zeros((buffer_size,), dtype=np.int64)
self.rewards = np.zeros((buffer_size,), dtype=np.float32)
self.flags = np.zeros((buffer_size,), dtype=np.float32)
self.batch_size = batch_size
self.max_size = buffer_size
self.idx = 0
self.size = 0
self.numpy_rng = numpy_rng
self.device = device
def push(self, state, action, reward, flag):
self.states[self.idx] = state
self.actions[self.idx] = action
self.rewards[self.idx] = reward
self.flags[self.idx] = flag
self.idx = (self.idx + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self):
idxs = self.numpy_rng.integers(0, self.size - 1, size=self.batch_size)
return (
torch.from_numpy(self.states[idxs]).float().to(self.device),
torch.from_numpy(self.actions[idxs]).unsqueeze(-1).to(self.device),
torch.from_numpy(self.rewards[idxs]).to(self.device),
torch.from_numpy(self.states[idxs + 1]).float().to(self.device),
torch.from_numpy(self.flags[idxs]).to(self.device),
)
class QNetwork(nn.Module):
def __init__(self, action_dim, device):
super().__init__()
self.network = self._build_net(action_dim)
if device.type == "cuda":
self.cuda()
def _build_conv2d(self, in_size, out_size, kernel_size, stride, apply_init=False, std=np.sqrt(2), bias_const=0.0):
layer = nn.Conv2d(in_size, out_size, kernel_size, stride)
if apply_init:
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
def _build_linear(self, in_size, out_size, apply_init=False, std=np.sqrt(2), bias_const=0.0):
layer = nn.Linear(in_size, out_size)
if apply_init:
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
def _build_net(self, action_dim):
return nn.Sequential(
self._build_conv2d(4, 32, 8, stride=4),
nn.ReLU(),
self._build_conv2d(32, 64, 4, stride=2),
nn.ReLU(),
self._build_conv2d(64, 64, 3, stride=1),
nn.ReLU(),
nn.Flatten(),
self._build_linear(64 * 7 * 7, 512),
nn.ReLU(),
self._build_linear(512, action_dim),
)
def forward(self, state):
return self.network(state)
def train(args, run_name, run_dir):
# Initialize wandb if needed (https://wandb.ai/)
if args.wandb:
import wandb
wandb.init(
project=args_.env_id.split("/")[1],
name=run_name,
sync_tensorboard=True,
config=vars(args),
monitor_gym=True,
save_code=True,
)
# Create tensorboard writer and save hyperparameters
writer = SummaryWriter(run_dir)
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# Create vectorized environment
env = gym.vector.SyncVectorEnv([make_env(args.env_id)])
# Metadata about the environment
observation_shape = env.single_observation_space.shape
action_dim = env.single_action_space.n
# Set seed for reproducibility
if args.seed:
numpy_rng = np.random.default_rng(args.seed)
torch.manual_seed(args.seed)
state, _ = env.reset(seed=args.seed)
else:
numpy_rng = np.random.default_rng()
state, _ = env.reset()
# Create the networks and the optimizer
policy = QNetwork(action_dim, args.device)
target_policy = QNetwork(action_dim, args.device)
target_policy.load_state_dict(policy.state_dict())
optimizer = optim.Adam(policy.parameters(), lr=args.learning_rate)
# Create the replay buffer
replay_buffer = ReplayBuffer(args.buffer_size, args.batch_size, observation_shape, numpy_rng, args.device)
# Remove unnecessary variables
del observation_shape
log_episodic_returns, log_episodic_lengths = [], []
start_time = time.process_time()
# Main loop
for global_step in tqdm(range(args.total_timesteps)):
with torch.no_grad():
# Exploration or intensification
exploration_prob = get_exploration_prob(args.eps_start, args.eps_end, args.eps_decay, global_step)
# Log exploration probability
writer.add_scalar("rollout/eps_threshold", exploration_prob, global_step)
if numpy_rng.random() < exploration_prob:
# Exploration
action = torch.randint(action_dim, (1,)).to(args.device)
else:
# Intensification
action = policy(torch.from_numpy(state).to(args.device).float()).argmax(axis=1)
# Perform action
action = action.cpu().numpy()
next_state, reward, terminated, truncated, infos = env.step(action)
# Store transition in the replay buffer
flag = 1.0 - np.logical_or(terminated, truncated)
replay_buffer.push(state, action, reward, flag)
state = next_state
# Log episodic return and length
if "final_info" in infos:
info = infos["final_info"][0]
log_episodic_returns.append(info["episode"]["r"])
log_episodic_lengths.append(info["episode"]["l"])
writer.add_scalar("rollout/episodic_return", np.mean(info["episode"]["r"][-5:]), global_step)
writer.add_scalar("rollout/episodic_length", np.mean(info["episode"]["l"][-5:]), global_step)
# Perform training step
if global_step > args.learning_start:
if not global_step % args.train_frequency:
# Sample a batch from the replay buffer
states, actions, rewards, next_states, flags = replay_buffer.sample()
# Compute TD error
td_predict = policy(states).gather(1, actions).squeeze()
# Compute TD target
with torch.no_grad():
# Double Q-Learning
action_by_qvalue = policy(next_states).argmax(1).unsqueeze(-1)
max_q_target = target_policy(next_states).gather(1, action_by_qvalue).squeeze()
td_target = rewards + args.gamma * flags * max_q_target
# Compute loss
loss = mse_loss(td_predict, td_target)
# Update policy network
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Log training metrics
writer.add_scalar("train/loss", loss, global_step)
# Update target network
if not global_step % args.target_update_frequency:
target_policy.load_state_dict(policy.state_dict())
# Log training metrics
writer.add_scalar("rollout/SPS", int(global_step / (time.process_time() - start_time)), global_step)
# Save final policy
torch.save(policy.state_dict(), f"{run_dir}/policy.pt")
print(f"Saved policy to {run_dir}/policy.pt")
# Close the environment
env.close()
writer.close()
# Average of episodic returns (for the last 5% of the training)
indexes = int(len(log_episodic_returns) * 0.05)
mean_train_return = np.mean(log_episodic_returns[-indexes:])
writer.add_scalar("rollout/mean_train_return", mean_train_return, global_step)
return mean_train_return
def eval_and_render(args, run_dir):
# Create environment
env = gym.vector.SyncVectorEnv([make_env(args.env_id, capture_video=True, run_dir=run_dir)])
# Metadata about the environment
action_dim = env.single_action_space.n
# Load policy
policy = QNetwork(action_dim, args.device)
policy.load_state_dict(torch.load(f"{run_dir}/policy.pt"))
policy.eval()
count_episodes = 0
list_rewards = []
numpy_rng = np.random.default_rng()
state, _ = env.reset(seed=args.seed) if args.seed else env.reset()
# Run episodes
while count_episodes < 30:
with torch.no_grad():
if numpy_rng.random() < 0.05:
# Exploration
action = torch.randint(action_dim, (1,)).to(args.device)
else:
# Intensification
action = policy(torch.from_numpy(state).to(args.device).float()).argmax(axis=1)
action = action.cpu().numpy()
state, _, _, _, infos = env.step(action)
if "final_info" in infos:
info = infos["final_info"][0]
returns = info["episode"]["r"][0]
count_episodes += 1
list_rewards.append(returns)
print(f"-> Episode {count_episodes}: {returns} returns")
env.close()
return np.mean(list_rewards)
if __name__ == "__main__":
args_ = parse_args()
# Create run directory
run_time = str(datetime.now().strftime("%d-%m_%H:%M:%S"))
run_name = "DQN_PyTorch"
env_name = args_.env_id.split("/")[1]
run_dir = f"runs/{env_name}__{run_name}__{run_time}"
print(f"Commencing training of {run_name} on {args_.env_id} for {args_.total_timesteps} timesteps.")
print(f"Results will be saved to: {run_dir}")
mean_train_return = train(args=args_, run_name=run_name, run_dir=run_dir)
print(f"Training - Mean returns achieved: {mean_train_return}.")
if args_.capture_video:
print(f"Evaluating and capturing videos of {run_name} on {args_.env_id}.")
mean_eval_return = eval_and_render(args=args_, run_dir=run_dir)
print(f"Evaluation - Mean returns achieved: {mean_eval_return}.")