Skip to content

Latest commit

 

History

History
174 lines (134 loc) · 9.03 KB

README.md

File metadata and controls

174 lines (134 loc) · 9.03 KB

第二章作业

1. 跑通提供的工程框架

运行环境为Ubuntu20.04 + ROS Noetic Screenshot from 2021-01-26 22-00-59.png 前端ICP点云匹配方法为NDT 运行截图.png 前端ICP点云匹配方法为ICP 可以看出刚开始 lidar_odometry 和 gnss_odometry 比较接近,随着无人车行驶,lidar_odometry累计误差越来越大,NDT相比ICP误差累计较慢,ICP运行一段时间之后直接跑飞了

2. 使用evo计算出分段统计误差和整体轨迹误差

NDT方法

  • 分段误差

分段误差.png 分段误差map.png

RPE w.r.t. translation part (m)
for delta = 100 (frames) using consecutive pairs
(not aligned)

       max	4.900111
      mean	0.913785
    median	0.702743
       min	0.149742
      rmse	1.180903
       sse	62.753922
       std	0.748016

  • 整体误差

整体误差.png

整体误差map.png

APE w.r.t. full transformation (unit-less)
(not aligned)

       max	35.568587
      mean	13.661834
    median	13.013886
       min	0.000001
      rmse	15.913199
       sse	1150423.514716
       std	8.159915

ICP方法

  • ICP分段误差

分段误差.png

分段误差map.png

RPE w.r.t. translation part (m)
for delta = 100 (frames) using consecutive pairs
(not aligned)

       max	242.260045
      mean	53.016540
    median	26.477208
       min	0.364602
      rmse	81.991107
       sse	302514.373924
       std	62.544289

  • ICP整体误差

整体误差.png

整体误差map.png

APE w.r.t. full transformation (unit-less)
(not aligned)

       max	1097.214374
      mean	391.479743
    median	333.652511
       min	0.000001
      rmse	506.708539
       sse	1166431348.516783
       std	321.709737

3. 自己实现点云匹配方法

基于Eigen实现的SVD-ICP

运行截图.png

  • 分段误差

分段误差.png

分段误差map.png

RPE w.r.t. translation part (m)
for delta = 100 (frames) using consecutive pairs
(not aligned)

       max	1098.853797
      mean	177.749155
    median	52.085394
       min	0.410623
      rmse	326.310045
       sse	4791521.060152
       std	273.648467
  • 整体误差

整体误差.png

整体误差map.png

APE w.r.t. full transformation (unit-less)
(not aligned)

       max	2293.007124
      mean	343.125106
    median	71.965393
       min	0.000001
      rmse	685.504169
       sse	2134828233.712260
       std	593.448505

基于Eigen实现的GN-ICP

  • 运行截图

运行截图.png

  • 分段误差

分段误差.png

分段误差map.png

RPE w.r.t. translation part (m)
for delta = 100 (frames) using consecutive pairs
(not aligned)

       max	97.709731
      mean	22.526664
    median	13.769346
       min	0.126752
      rmse	33.224903
       sse	49675.239105
       std	24.422195
  • 整体误差

整体误差.png

整体误差map.png

APE w.r.t. full transformation (unit-less)
(not aligned)

       max	128.180486
      mean	38.566743
    median	28.547089
       min	0.000002
      rmse	51.926611
       sse	12238836.862241
       std	34.770380

综上可以看出,在没有闭环检测的情况下,无论是NDT,还是ICP激光里程计都会发生漂移,而且Z方向漂移都很大(因为在平面运动,有退化现象?),从效果上来看NDT > GN-ICP > SVD-ICP。