Al³⁺, Fe³⁺, Cr³⁺, La³⁺, Ce³⁺ PO_4^{3-} , $Fe(CN)_6^{3}$ Fe(CN)₆ Th⁴⁺, Zr⁴⁺, Ce⁴⁺, Sn⁴⁺ Activity Coefficients for Ions at 25°C **TABLE 10-2** | | Activity Coefficient at Indicated Ionic Strength | | | | | | |--|--|-------|-------|-------|------|------| | Ion | $\alpha_{\rm X}$, nm | 0.001 | 0.005 | 0.01 | 0.05 | 0.1 | | H ₃ O ⁺ | 0.9 | 0.967 | 0.934 | 0.913 | 0.85 | 0.83 | | Li ⁺ , C ₆ H ₅ COO ⁻ | 0.6 | 0.966 | 0.930 | 0.907 | 0.83 | 0.80 | | Na ⁺ , IO ₃ ⁻ , HSO ₃ ⁻ , HCO ₃ ⁻ , H ₂ PO ₄ ⁻ , H ₂ AsO ₄ ⁻ , OAc ⁻ | 0.4-0.45 | 0.965 | 0.927 | 0.902 | 0.82 | 0.77 | | OH ⁻ , F ⁻ , SCN ⁻ , HS ⁻ , CIO ₃ ⁻ , CIO ₄ ⁻ , BrO ₃ ⁻ , IO ₃ ⁻ , MnO ₄ ⁻ | 0.35 | 0.965 | 0.926 | 0.900 | 0.81 | 0.76 | | K ⁺ , CI ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , HCOO ⁻ | 0.3 | 0.965 | 0.925 | 0.899 | 0.81 | 0.75 | | Rb ⁺ , Cs ⁺ , TI ⁺ , Ag ⁺ , NH ₄ ⁺ | 0.25 | 0.965 | 0.925 | 0.897 | 0.80 | 0.75 | | Mg^{2+} , Be^{2+} | 0.8 | 0.872 | 0.756 | 0.690 | 0.52 | 0.44 | | Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Phthalate ²⁻ | 0.6 | 0.870 | 0.748 | 0.676 | 0.48 | 0.40 | | Sr^{2+} , Ba^{2+} , Cd^{2+} , Hg^{2+} , S^{2-} | 0.5 | 0.869 | 0.743 | 0.668 | 0.46 | 0.38 | | Pb ²⁺ , CO ₃ ²⁻ , SO ₃ ²⁻ , C ₂ O ₄ ²⁻ | 0.45 | 0.868 | 0.741 | 0.665 | 0.45 | 0.36 | | Hg_{2}^{2+} , SO_{4}^{2-} , $S_{2}O_{3}^{2-}$, Cr_{4}^{2-} , HPO_{4}^{2-} | 0.40 | 0.867 | 0.738 | 0.661 | 0.44 | 0.35 | 0.9 0.4 1.1 0.5 0.737 0.726 0.587 0.569 Source: Reprinted (adapted) with permission from J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675, DOI: 10.1021/ja01288a032. Copyright 1937 American Chemical Society. charged ions in a solution. In other words, it is impossible to measure the properties of individual ions in the presence of counter-ions of opposite charge and solvent molecules. We should point out, however, that mean activity coefficients calculated from the data in Table 10-2 agree satisfactorily with the experimental values. 0.540 0.505 0.348 0.305 0.443 0.394 0.252 0.200 0.24 0.16 0.10 0.047 0.18 0.095 0.063 0.020 ## FEATURE 10-1 ## **Mean Activity Coefficients** The mean activity coefficient of the electrolyte A_mB_n is defined as $$\gamma_{\pm}$$ = mean activity coefficient = $(\gamma_A^m \gamma_B^n)^{1/(m+n)}$ The mean activity coefficient can be measured in any of several ways, but it is impossible experimentally to resolve this term into the individual activity coefficients for γ_A and γ_B . For example, if $$K_{\rm sp} = [A]^m [B]^n \cdot \gamma_A^m \gamma_B^n = [A]^m [B]^n \gamma_{\pm}^{(m+n)}$$ we can obtain $K_{\rm sp}$ by measuring the solubility of A_mB_n in a solution in which the electrolyte concentration approaches zero (that is, where both γ_A and $\gamma_B \to 1$). A second solubility measurement at some ionic strength μ_1 gives values for [A] and [B]. These data then permit the calculation of $\gamma_A^m\gamma_B^n = \gamma_\pm^{(m+n)}$ for ionic strength μ_1 . It is important to understand that this procedure does not provide enough experimental data to permit the calculation of the *individual* quantities γ_A and γ_B and that there appears to be no additional experimental information that would permit evaluation of these quantities. This situation is general, and the *experimental* determination of an individual activity coefficient is impossible.