Al³⁺, Fe³⁺, Cr³⁺, La³⁺, Ce³⁺

 PO_4^{3-} , $Fe(CN)_6^{3}$

Fe(CN)₆

Th⁴⁺, Zr⁴⁺, Ce⁴⁺, Sn⁴⁺

Activity Coefficients for Ions at 25°C

TABLE 10-2

	Activity Coefficient at Indicated Ionic Strength					
Ion	$\alpha_{\rm X}$, nm	0.001	0.005	0.01	0.05	0.1
H ₃ O ⁺	0.9	0.967	0.934	0.913	0.85	0.83
Li ⁺ , C ₆ H ₅ COO ⁻	0.6	0.966	0.930	0.907	0.83	0.80
Na ⁺ , IO ₃ ⁻ , HSO ₃ ⁻ , HCO ₃ ⁻ , H ₂ PO ₄ ⁻ , H ₂ AsO ₄ ⁻ , OAc ⁻	0.4-0.45	0.965	0.927	0.902	0.82	0.77
OH ⁻ , F ⁻ , SCN ⁻ , HS ⁻ , CIO ₃ ⁻ , CIO ₄ ⁻ , BrO ₃ ⁻ , IO ₃ ⁻ , MnO ₄ ⁻	0.35	0.965	0.926	0.900	0.81	0.76
K ⁺ , CI ⁻ , Br ⁻ , I ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , HCOO ⁻	0.3	0.965	0.925	0.899	0.81	0.75
Rb ⁺ , Cs ⁺ , TI ⁺ , Ag ⁺ , NH ₄ ⁺	0.25	0.965	0.925	0.897	0.80	0.75
Mg^{2+} , Be^{2+}	0.8	0.872	0.756	0.690	0.52	0.44
Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Ni ²⁺ , Co ²⁺ , Phthalate ²⁻	0.6	0.870	0.748	0.676	0.48	0.40
Sr^{2+} , Ba^{2+} , Cd^{2+} , Hg^{2+} , S^{2-}	0.5	0.869	0.743	0.668	0.46	0.38
Pb ²⁺ , CO ₃ ²⁻ , SO ₃ ²⁻ , C ₂ O ₄ ²⁻	0.45	0.868	0.741	0.665	0.45	0.36
Hg_{2}^{2+} , SO_{4}^{2-} , $S_{2}O_{3}^{2-}$, Cr_{4}^{2-} , HPO_{4}^{2-}	0.40	0.867	0.738	0.661	0.44	0.35

0.9

0.4

1.1

0.5

0.737

0.726

0.587

0.569

Source: Reprinted (adapted) with permission from J. Kielland, J. Am. Chem. Soc., 1937, 59, 1675, DOI: 10.1021/ja01288a032. Copyright 1937 American Chemical Society.

charged ions in a solution. In other words, it is impossible to measure the properties of individual ions in the presence of counter-ions of opposite charge and solvent molecules. We should point out, however, that mean activity coefficients calculated from the data in Table 10-2 agree satisfactorily with the experimental values.

0.540

0.505

0.348

0.305

0.443

0.394

0.252

0.200

0.24

0.16

0.10

0.047

0.18

0.095

0.063

0.020

FEATURE 10-1

Mean Activity Coefficients

The mean activity coefficient of the electrolyte A_mB_n is defined as

$$\gamma_{\pm}$$
 = mean activity coefficient = $(\gamma_A^m \gamma_B^n)^{1/(m+n)}$

The mean activity coefficient can be measured in any of several ways, but it is impossible experimentally to resolve this term into the individual activity coefficients for γ_A and γ_B . For example, if

$$K_{\rm sp} = [A]^m [B]^n \cdot \gamma_A^m \gamma_B^n = [A]^m [B]^n \gamma_{\pm}^{(m+n)}$$

we can obtain $K_{\rm sp}$ by measuring the solubility of A_mB_n in a solution in which the electrolyte concentration approaches zero (that is, where both γ_A and $\gamma_B \to 1$). A second solubility measurement at some ionic strength μ_1 gives values for [A] and [B]. These data then permit the calculation of $\gamma_A^m\gamma_B^n = \gamma_\pm^{(m+n)}$ for ionic strength μ_1 . It is important to understand that this procedure does not provide enough experimental data to permit the calculation of the *individual* quantities γ_A and γ_B and that there appears to be no additional experimental information that would permit evaluation of these quantities. This situation is general, and the *experimental* determination of an individual activity coefficient is impossible.