
Think-aloud Study of MessageFormat 2
Shun Kashiwa∗1, Samantha Prestrelski†1, and Michael Coblenz‡1

1UC San Diego, La Jolla, CA

January 22, 2025

Abstract
Internationalization and localization are critical for making software accessible to global audi-

ences, yet their implementation often poses challenges due to linguistic diversity and complexity.
MessageFormat 2 (MF2), a successor to MessageFormat 1.0, aims to overcome these challenges
by offering enhanced expressivity and usability. This study evaluates MF2’s usability and effec-
tiveness through a think-aloud user study with software engineers and translators. Participants
were tasked with comprehension, writing, and translation tasks using MF2, and we conducted a
user study with ten participants. The results reveal that MF2’s syntax is generally approachable
for both software engineers and translators, though the two groups provided distinct feedback.
Software engineers reported limitations in MF2’s expressivity and spent time navigating its func-
tions and parameters to compose messages. Translators, on the other hand, found the .match
syntax challenging but faced no difficulty translating existing MF2 messages. In addition, MF2
exhibited shortcomings in handling certain locale-specific linguistic rules, such as Turkish suffixes
and Danish ordinal forms. Overall, our findings suggest that MF2 holds promise as a standard
framework for defining translatable messages. Expansion of the default function registry, compre-
hensive documentation, and the development of supporting tools such as GUI editors can foster
its broader adoption.

1 Introduction
Internationalization (i18n) and localization (l10n) are critical processes in making software accessible
and usable for people around the world. By enabling applications to adapt to diverse languages,
cultures, and regions, i18n and l10n improve accessibility and ensure that software resonates with its
users. However, implementing these processes effectively poses significant challenges, especially given
the linguistic complexity of natural languages. Grammatical rules, such as pluralization and gender-
specific constructs, vary widely and require precise handling to ensure correctness and inclusivity in
translated messages.

To address these challenges and avoid re-implementing infrastructure for localization, standards
have been developed to streamline the process. One of the most widely used is ICU (International
Components for Unicode) by The Unicode Consortium [3], which provides libraries for i18n. A key
component of ICU is MessageFormat, a syntax for writing localizable messages. Despite its popularity,
MessageFormat 1.0 has faced criticism [7] for limitations in expressivity and usability. In response, the
Unicode Consortium has been developing its successor – MessageFormat 2 (MF2). As of December
7th, 2024, MF2 is included as a “final candidate” in the latest release of the Locale Data Markup
Language (LDML) specification [6]. This means that the stability policy is not yet in place, allowing
feedback to inform potential adjustments to various aspects of the language specification, with an
emphasis on preserving backward compatibility whenever feasible.

Localization is particularly important on the web, where applications often need to serve diverse
global audiences. Recognizing this, TC39 – the committee responsible for ECMAScript (JavaScript)
– has been adding a number of APIs to the Intl namespace. The language now supports formatting

∗skashiwa@ucsd.edu
†sprestrelski@ucsd.edu
‡mcoblenz@ucsd.edu

1

Task ID Comprehension Tasks Description
C01 Function Annotations - Number Warm-up
C02 Function Annotations - Integer Test behavior of integer function
C03 Function Annotations - Currency Test behavior of currency function
C04 Valid Options Test pattern recognition for options and functions
C05 Variables - Inputs Test implicit parameters
C06 Variables - Declarations 1 Test local declaration overriding input parameters
C07 Variables - Declarations 2 Test duplicated declarations
C08 Matching - String Test simple string matching
C09 Matching - String Numbers Test matching with numbers and strings
C10 Matching - Ordinals Test behavior of ordinal select

Table 1: Summary of Comprehension Tasks

numbers, dates, lists, etc., without external packages. Yet, the language lacks compiling dynamic
messages, and there is a proposal to add Intl.MessageFormat for rendering MF2 messages [2]. This
effort requires careful consideration: ECMA prioritizes backward compatibility, and introducing a new
API entails significant responsibility. Once added, revising or removing it becomes difficult, if not
impossible. To ensure that MF2 meets the needs of web developers and avoids potential pitfalls, TC39
has requested user studies.

In this project, we conducted a think-aloud user study to evaluate the design of MessageFormat 2
(MF2). Our study targeted two key user groups – software engineers and translators – and involved
nine interviews. Section 2 outlines our evaluation methodology, including task design, and Section 3
presents the key findings of the study.

2 Method
2.1 Task Design
We are interested in two groups of individuals who work on internationalized web applications:

1. Software engineers: These are the individuals responsible for implementing the web UI. They
write user-facing messages to match a specific design within the web application, typically in the
primary language (likely English).

2. Translators: These individuals receive message templates from software engineers and translate
them into other languages.

We aimed to evaluate each group’s performance in reading and writing (including translating)
MF2 messages. Both readability and ease of writing are critical aspects of the language. Readability is
essential because individuals may encounter MF2 messages in existing projects without prior training,
and they should be able to understand how these messages are rendered. The ability to write new
messages effectively, on the other hand, ensures that people can efficiently create new messages with
access to documentation. We designed the comprehension section and writing/translation sections to
assess readability and ease of writing, respectively.

The comprehension section consists of ten multiple-choice questions asking participants to select one
of three to five options. Participants are not allowed to use any external resources and are instructed
to answer the questions to the best of their knowledge. Table 1 presents the list of comprehension
tasks and their objectives.

To assess readability, we prepared two sets of tasks: one for software engineers and the other for
translators. Software engineers’ tasks (writing tasks) focus on writing MF2 messages from scratch. We
gave participants specifications of the messages and asked them to write MF2 messages that satisfied
them. We provided a test suite for each task with different input parameters, and the participants
can move on to the next task once their solution passes all test cases. Figure 1 shows a screenshot
of the interface provided to participants of this group, including the task description, input-output
specifications, and the test suite results. Table 2 summarizes the writing tasks and features of the lan-
guage required for completion. In this section, the participants were allowed to use messageformat.dev,

2

https://messageformat.dev

which is an unofficial documentation of MessageFormat 21. We selected this as a reference as it covers
all aspects of the language tested in this study and is more readable than the original specification.
While this website is an unofficial website created by an individual, there are plans to transfer it to the
Unicode Foundation as an official website. We believe that developers will refer to such a document
when working on MessageFormat 2. We recommended the quick start page as a general reference. For
tasks requiring features not covered in the quick start, we provided additional links to resources that
explain those features.

Figure 1: Sample failing and passing test suite

On the other hand, translators’ tasks (translation tasks) focus on translating existing MF2 messages.
We show the expected answers of the software engineers’ tasks and ask translators to translate messages
into their locale. Since there is no single translation and it is difficult to tell the correctness of the
translation, we do not provide a test suite for translation tasks. Instead, we render the translated
message with multiple input parameters and asked the participants to confirm their translation is
reasonable before moving to the next tasks. Figure 2 shows a screenshot of the interface provided to
participants in this group, including the MF2 message in English and previews.

1We deployed a fork of the website and used it to keep the content consistent throughout the study.

3

Figure 2: Sample translation render and confirmation

Task ID Writing Tasks Description
W01 MessageFormat 2 Message Simple message
W02 Parameterized Message Simple message with a placeholder
W03 Pluralization Number with pluralization
W04 Number Formatting - Percentage Format a number with ‘percent’ style
W05 Select - string String matching on gender
W06 Select - ordinal Number matching for ordinals
W07 Select - match at once String matching on two variables
W08 String Literals String matching with literals
W09 Formatting - Date Test usability of date functionality
W10 Formatting - Timestamp Test usability of datetime functionality
W11 Formatting - Match Test date formatting in a non-traditional format

Table 2: Summary of Writing Tasks

After the writing/translation section, we concluded the study with the survey section. We asked
the participants to rate the difficulty of the previous two sections and comment on the challenges and
potential improvements to the language.

We developed MessageFormat Arena – a web application designed for participants to complete the
specified tasks. The app runs in web browsers, enabling convenient remote interviews and allowing
participants to use their own computers. For writing and translation tasks, MessageFormat Arena
incorporates a simple text editor with syntax highlighting and error reporting features, powered by
mf2-tools [1].

4

2.2 Recruitment
As a proxy for software engineers, we recruited six UC San Diego graduate students (SE participants).
Each student was screened for experience writing programs with user-facing interfaces, such as web apps
and smartphone apps, as well as previous experience with internationalization libraries or frameworks.
While most participants have worked with web or mobile apps and some have worked on localization,
none had experience with MF2. For anonymity, these participants are referred to as SE1 through
SE6. Participants were given the option to choose between an in-person or virtual interview via Zoom.
Three interviews were conducted in person, while the remaining three took place on Zoom. Graduate
students received $20 gift cards as compensation for their time.

We interviewed four translators sourced from a contact at the Mozilla Foundation (TR participants).
Each translator was screened for years of experience, the types of projects worked on, and previous
experience with template languages. These translators have more than five years of experience in
translating and worked on translating open-source Mozilla projects like Firefox and Thunderbird.
None of the participants had experience with MF2. These participants are referred to as TR1 through
TR4. Their working languages are Danish, Turkish, Traditional Chinese (Taiwan), and Portuguese
(Brazil), respectively.

2.3 Interview Process
Each interview lasted approximately one hour. Participants first completed a consent form before being
asked to open a link to MessageFormat Arena. Regardless of whether the interview was conducted in
person or via Zoom, participants shared their screens on Zoom. They then followed the instructions
provided on MessageFormat Arena and worked on a series of tasks. We asked the participants to
verbalize their thinking throughout the study.

To ensure participants did not get stuck, we monitored their progress. If a participant had not
made progress on a task for three minutes, we intervened with hints, typically directing them to the
relevant section of the documentation.

3 Results
3.1 Comprehension
Translators found .match puzzling C08 asked the participants to predict the result of the follow-
ing MF2 message when val is set to "foo".

.input {$val :string}

.match $val
foo {{Foo}}
bar {{Bar}}
* {{No match}}

The string "foo" matches the first branch, so the message will produce "Foo". All six SE partici-
pants saw connections between the .match syntax and similar programming concepts, such as pattern
matching in functional programming, switch statements, and regular expressions and selected the cor-
rect answer. In contrast, two translators (TR1 and TR2) struggled with this question. They didn’t
understand how the matching variable is used. TR1 guessed the correct answer but TR2 gave up and
submitted a randomly selected answer. Fortunately, it didn’t affect how they approached translation
tasks – all translators correctly understood that they needed to translate each branch.

“Ordinal” is confusing C10 asked participants to predict the result of the following MF2 message
when num is set to 3 in English. This message involves ordinal categories (e.g., 1st, 2nd, 3rd, 33rd,
111th) in combination with the .match syntax.

.input {$num :number select=ordinal}

.match $num
one {{You are {$num}st}}

5

two {{You are {$num}nd}}
few {{You are {$num}rd}}
* {{You are {$num}th}}

The number 3 belongs to the few category in English, so the third branch will render “You are
3rd.” Multiple SE participants commented that they did not know what the ordinal keyword meant
and were not sure what the output would be. The ordinal selector for the number function uses the
few key to denote 3rd, which SE2 and SE3 commented on. SE2 stated “I assume this is meant to
print third, but I’m not sure how much ‘few’ exactly is.” SE6 and TR3 assumed the provided number
3 would not match the few case and fall back to the catch-all (*) case. During W06, the writing task
for ordinals, SE6 noted the difference in endings for numbers like 1st versus 111th and was surprised
that the ordinal selector handled that case: “I don’t think this will capture all cases, because at some
point it will wrap around and start with ‘nd’ again.”

3.2 Writing Tasks
Violating the “Don’t Repeat Yourself” principle Matchers allow you to group together differ-
ent variants of a message, where one variant is chosen based on runtime data. Each key is followed by a
separate quoted pattern. While this functionality is useful for translators, SE participants commented
on how repetitive match tasks were (e.g., W06, W07). Figure 3 shows a screenshot of a repetitive
solution. Nested matching was intentionally excluded from the language, citing feature coverage by
“the combination of message references and top-level selection features, which together provide a suf-
ficient feature set at a lower cost to the ecosystem than nested selectors would do.”[4] SE1 indicated
they liked the syntax but noted a code versus readability tradeoff: “If you could have match inside
match, it might have been easier. It might not look as clean but it might reduce the amount of code.”
SE3 attempted to assign a .match to a .local. SE6 pointed out that their code violated the “Don’t
Repeat Yourself” principle and proposed a switch statement construction of putting “a literal string in
a switch statement before and after it just to match the part that I need.” None of the TR participants
commented on the verbosity of matchers.

.input {$count :integer}

.input {$gender :string}

.match $count $gender
one female {{She has {$count} item in her cart}}
one male {{He has {$count} item in his cart}}
one * {{They have {$count} item in their cart}}
* female {{She has {$count} items in her cart}}
* male {{He has {$count} items in his cart}}
* * {{They have {$count} items in their cart}}

Figure 3: Sample solution for W07

Unique use of the pipe symbol (|) for literals W08 tested string matching on a non-alphanumeric
character, which requires the pipe symbol to quote the string. This differs from other programming
languages where single quotation marks, double quotation marks, or backticks are commonly used.
This difference was an intentional design choice in MF2, as one of the goals of the syntax is that mes-
sages should be “easily embeddable inside many container formats.”[5] Three of the SE participants
attempted to use double quotes for W08 before checking the documentation on how to write a literal.
SE1 attempted to use curly braces, similar to how values in .match statements are surrounded. SE4
tried to escape the space in between "New\ York". SE6 noted that “every language I know except
for sed uses double quotes.” Although nonintuitive at first, no further issues with literals arose after
participants discovered the pipe syntax.

Feedback on Syntax When asked about challenging aspects of the tasks during the post-task
survey, SE participants felt that the syntax itself was not difficult to learn, but figuring out which
parameters and functions to use was. SE1 stated that “If I knew how everything worked, it would

6

be easier to write the messages.” SE2 stated that the most challenging part of the writing tasks was
“figuring out which parameters were required and which were optional.”

3.3 Translation Tasks
Translation takes less time than writing Compared to writing tasks for software engineers,
translation tasks took less time to complete. Figure 4 shows the average time spent on each writ-
ing/translation task per participant group. On average, translation tasks for software engineers re-
quired 32 minutes and 58 seconds, whereas translation tasks for translators only required 13 minutes
and 23 seconds. While we do not make any conclusive claims given the small sample size, these
numbers suggest translation is easier than writing messages from scratch, which is desirable as each
message can be translated to many locales. It is worth noting that none of the translators referred to
the documentation and worked directly on translating the given English MF2 messages.

Figure 4: Average Time Spent for Writing/Translation Tasks

Translation is still challenging MF2 offers features designed to simplify internationalization; how-
ever, translators still encountered challenges and had to make compromises. While they indicated that
their translations effectively conveyed the intended message, some of the rendered messages differed
from how they would have translated specific, concrete messages. We report two instances in which
MF2 failed to adequately support localization.

• In Turkish, certain words require suffixes that depend on the pronunciation of the final syllable.
W10 involved formatting a timestamp in a “long” style, which concludes with the timezone in
the format GMT+n, where n is a number. The suffix added to n varies based on its pronunciation
(e.g., 1’de, 3’te, 6’da). The current design of MF2 does not support encoding this linguistic rule.

• In Danish, ordinals are written as words depending on the context (e.g., første, anden, tredje,
etc.). In MF2, there is no built-in way to derive these word forms from numbers, other than
explicitly matching the number and hardcoding cases for each one.

It is worth noting that, although these issues exist in the current design of MF2, they can be
addressed by introducing new functions. A significant limitation of MF1 was its lack of extension
points [7]. Learning from this, MF2 includes a general “function” mechanism that allows for future
extensions, either through the “default registry” or user-defined functions. Both of the issues mentioned
above can be resolved by adding appropriate functions.

7

4 Limitations
The sample size in this study was small for both groups, which may limit the generalizability of our
results to a larger population. Though we were recommended to test Polish, Japanese, Turkish, French,
and Arabic for their unique localization differences, we were unable to test all of these languages due
to the availability of only four translators.

Additionally, the MF2 registry is still changing. One common application of localization is currency,
where the currency and exchange value are indicated for specific locales. However, as this function
had not been merged to the released version of the library, we had to exclude it from the study.
Testing this function would also require knowledge of Unicode Currency Identifiers and other Unicode
documentation, which do not affect the syntax of MF2. Converting datetimes between timezones was
similarly excluded for this reason.

This study focuses on the current design of the specification, leaving other topics beyond its scope.
For instance, TR1 mentioned a broader problem of translating words with different genders. While
match statements might be able to handle this, but they would require developers to deliberately
account for it when writing MF2 messages. Such topics are deferred for future studies.

5 Discussion
SE participants did not find it difficult to learn the MF2 syntax. A repeatedly stated challenge was
needing to know the correct functions and options for the tasks. This may be an issue for software
engineers at first, but these options would become more familiar over time for those who frequently
need to implement localized strings. All SE participants were able to complete the tasks in the allotted
time with the MF2 documentation. Thus, software engineers who wanted to use MF2 could ostensibly
figure out the options for their intended use case. If MF2 was integrated into a larger codebase,
developers could look at previous examples to learn unusual syntax, like pipes surrounding quoted
literals, without having to look at the MF2 documentation. The study results suggest that syntax
itself is not a barrier to software engineers’ adoption, but quality resources are essential for them to
learn how to write messages in a localization-friendly way.

Multiple SE participants compared MF2 to Python formatting strings and commented on the
flexibility. P2 stated that MF2 “seems like a beefed up version with more customization for different
types.” P6 stated that “I can see myself using this because there are repetitive tasks that occur in any
programming language, like ordinal” and that “it might be simpler to use this than create extra Python
code for a trivial task.” There exist implementations to use MF2 messages in JavaScript/TypeScript,
Java, and C++, but the positive feedback from this study encourages further adoption of MF2 support
in other languages.

The TR participants experienced no difficulty translating source strings into different languages.
They quickly identified the parts of the source strings requiring translation and completed the task
efficiently. Because the process did not involve adding language constructs, the translation proceeded
smoothly, with only a few exceptions discussed in Section 3.3. All translators noted that they primar-
ily use web-based GUIs for translation tasks and rarely engage directly with the underlying syntax.
The successful completion of the translations without a GUI indicates that no significant issues are
anticipated when using a GUI.

6 Future Work
Project Integration Since this study specifically focused on the MF2 format and not the integra-
tion, we did not address differences in how a project may be structured when using MF2 versus an
existing framework. Extensions of this study could compare MF2 to popular localization and inter-
nationalization frameworks, for example i18next and formatJS for JavaScript, and evaluate message
length, feature availability, and ease of integration.

Feature Testing Some features are present in MF2 but were not tested by this study. For example,
MF2 allows users to define custom functions such as applying text transformations. This might be a

8

useful feature for software engineers who want finer control over messages. Future work could explore
challenges in using and implementing custom functions.

Nested Matching MF2 does not allow nested matching, which leads to repetitive values in long
match statements. The MF2 Working Group cited “the use of them has not been evaluated in pro-
duction localization systems to date”[4] as a reason for not incorporating them into the language. It
is worth noting that nested matching is likely to complicate translation as translators would have to
deal with the inner match expression to fit the grammar of the target language. Future work could
compare the readability of messages with nested matches versus the current implementation.

MF2 Ecosystem All four translators noted that they primarily rely on graphical user interface
(GUI) tools for their translation work, highlighting the critical role of user-friendly tooling in localiza-
tion workflows. However, as a newly introduced standard, MF2 currently lacks a mature ecosystem of
tools to support its adoption and practical use. To ensure its success and widespread adoption, it is
essential to prioritize the development of a robust ecosystem, including GUIs tailored to translators,
developer-focused integrations, and comprehensive documentation.

7 Conclusion
This report describes the results of a think-aloud user study evaluating MessageFormat 2, a Unicode
standard for localizable dynamic message strings. We conducted a think-aloud user study on software
engineers and translators to understand if MF2 meets the needs of web developers and what challenges
they face while writing MF2 messages. We observed that both software developers and translators did
not face major issues with the core MF2 syntax, while we found minor obstacles the participants faced,
such as the .match syntax, the “ordinal” select style, the use of the pipe symbol, etc. We believe that
these issues can be resolved with proper documentation, further refinements to the default function
registry, and the development of supporting tools such as GUI editors.

References
[1] Luca Casonato. mf2-tools. 2024. url: https://github.com/lucacasonato/mf2-tools.
[2] TC39. Intl.MessageFormat Proposal. en. 2022. url: https://github.com/tc39/proposal-

intl-messageformat.
[3] Unicode. International Components for Unicode. url: https://icu.unicode.org/.
[4] Unicode. Message Format Consensus Decisions. url: https://github.com/unicode- org/

message-format-wg/blob/main/docs/consensus_decisions.md.
[5] Unicode. Message Format Syntax Specification. url: https://github.com/unicode- org/

message-format-wg/blob/main/spec/syntax.md.
[6] Unicode. Unicode Locale Data markup language (LDML). Nov. 2024. url: https://www.unicode.

org/reports/tr35/.
[7] Unicode. Why MessageFormat needs a successor. url: https://github.com/unicode-org/

message- format- wg/blob/7c1f1a4af4aead387ca6aec48fffc2c6e2191c4d/docs/why_mf_
next.md.

9

https://github.com/lucacasonato/mf2-tools
https://github.com/tc39/proposal-intl-messageformat
https://github.com/tc39/proposal-intl-messageformat
https://icu.unicode.org/
https://github.com/unicode-org/message-format-wg/blob/main/docs/consensus_decisions.md
https://github.com/unicode-org/message-format-wg/blob/main/docs/consensus_decisions.md
https://github.com/unicode-org/message-format-wg/blob/main/spec/syntax.md
https://github.com/unicode-org/message-format-wg/blob/main/spec/syntax.md
https://www.unicode.org/reports/tr35/
https://www.unicode.org/reports/tr35/
https://github.com/unicode-org/message-format-wg/blob/7c1f1a4af4aead387ca6aec48fffc2c6e2191c4d/docs/why_mf_next.md
https://github.com/unicode-org/message-format-wg/blob/7c1f1a4af4aead387ca6aec48fffc2c6e2191c4d/docs/why_mf_next.md
https://github.com/unicode-org/message-format-wg/blob/7c1f1a4af4aead387ca6aec48fffc2c6e2191c4d/docs/why_mf_next.md

	Introduction
	Method
	Task Design
	Recruitment
	Interview Process

	Results
	Comprehension
	Writing Tasks
	Translation Tasks

	Limitations
	Discussion
	Future Work
	Conclusion

