const tf = require('@tensorflow/tfjs-node'); const fs = require('fs'); const path = require('path'); async function loadImages(folder) { const files = fs.readdirSync(folder); const images = []; const labels = []; for (const file of files) { const label = path.basename(folder); const imageBuffer = fs.readFileSync(path.join(folder, file)); const imageTensor = tf.node.decodeImage(imageBuffer, 3) .resizeNearestNeighbor([128, 128]) .toFloat() .div(tf.scalar(255.0)); images.push(imageTensor); labels.push(label); } return { images: tf.stack(images), labels }; } async function loadDataset(basePath) { const folders = fs.readdirSync(basePath); const data = []; const labelMap = {}; folders.forEach((folder, index) => labelMap[folder] = index); for (const folder of folders) { const { images, labels } = await loadImages(path.join(basePath, folder)); data.push({ images, labels: labels.map(label => labelMap[label]) }); } return { images: tf.concat(data.map(d => d.images)), labels: tf.oneHot(tf.tensor1d(data.flatMap(d => d.labels), 'int32'), Object.keys(labelMap).length), labelMap }; } async function trainModel() { const basePath = './training_images'; // Folder with labeled subfolders const dataset = await loadDataset(basePath); const { images, labels } = dataset; const model = tf.sequential(); model.add(tf.layers.conv2d({ inputShape: [128, 128, 3], filters: 32, kernelSize: 3, activation: 'relu' })); model.add(tf.layers.flatten()); model.add(tf.layers.dense({ units: Object.keys(dataset.labelMap).length, activation: 'softmax' })); model.compile({ optimizer: 'adam', loss: 'categoricalCrossentropy', metrics: ['accuracy'] }); await model.fit(images, labels, { epochs: 5 }); await model.save('file://./saved-model'); // Save in TensorFlow.js format console.log('Model saved as TensorFlow.js format'); } (async () => { await trainModel(); })();