import onnxruntime as ort from PIL import Image import numpy as np # Load the ONNX model session = ort.InferenceSession('./saved-model/model.onnx') # Get input and output names input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name # Load and preprocess the image img = Image.open('./training_images/shirt/00e745c9-97d9-429d-8c3f-d3db7a2d2991.jpg').resize((128, 128)) img_array = np.array(img).astype(np.float32) / 255.0 # Normalize pixel values to [0, 1] img_array = np.expand_dims(img_array, axis=0) # Add batch dimension # Run inference outputs = session.run([output_name], {input_name: img_array}) print(f"Inference outputs: {outputs}")