HATE: a HArdware Trojan Emulation Environment
for Microprocessor-based Systems

Cristiana Bolchini, Luca Cassano,
Ivan Montalbano, Giampiero Repole, Andrea Zanetti
Politecnico di Milano
Milano, Italy
{first_name.last_name} @polimi.it

Abstract—The constant quest of low production cost and
short time-to-market, together with the growing complexity of
integrated circuits led to the globalization of the supply chain
of silicon devices. One of the threats related to such a supply
chain are Hardware Trojan Horses (HWTs), that, in the last
years, became a serious issue not only for academy but also for
industry. Although a large number of methodologies for HWTs
prevention, detection and tolerance have been proposed, there
is a lack of well-recognized methods and metrics to evaluate
their effectiveness. In this paper we present HATE!, a HArdware
Trojan Emulation Environment. The goal of HATE is twofold:
(i) the tool can be used to analyse whether a given HWT (or
a given set of HWTs) is activated by a software running on a
microprocessor, and (ii) it can be used to assess HWTs detection
techniques in microprocessors against a set of generated HWTs
(either randomly or not). HATE represents, in our vision, a step
towards the definition of a reference benchmarking scenario, to
provide a comparative ground for evaluating different proposals
focusing on HWT detection/tolerance. A subset of MiBench
programs have been used to analyse the efficiency of HATE.

Index Terms—Emulation, Hardware Security, Hardware Tro-
jan Detection, Hardware Trojans, Microprocessors

I. INTRODUCTION AND RELATED WORK

Given the increasing complexity of modern integrated cir-
cuits (ICs) and the continuous seek for low production cost
and short time-to-market, the current trend in ICs design and
fabrication is to globalize many production activities [1]. After
system specification, the designer often outsources the design
of some of the hardware modules, buys third-party intellectual
property cores (3PIPs), sometimes also outsourcing the masks
and the final chip fabrication [2].

This globalized supply chain allows for a significant reduc-
tion of design cost and time, but comes with a significant loss
of trust in the final delivered ICs [3]. Indeed, provided that
it is very hard to ensure the trustworthiness of all the parties
involved in the supply chain, such a distributed design and
fabrication process exposes the product to a huge number of
threats: ICs may be overproduced by the foundry and sold
in the black market [4]; defective or dismissed ICs may be
delivered as good ones [5]; IP core licenses may be violated
and IP cores may be overused [6]; designs may be maliciously

*Institute of Engineering Univ. Grenoble Alpes
THATE is freely available at http://cassano.faculty.polimi.it/

Giorgio Di Natale
Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA
38000 Grenoble, France
giorgio.di-natale @univ-grenoble-alpes.fr

modified to insert stealthy unwanted functionalities in the final
product, known as Hardware Trojan Horses (HWTs) [7].

Generally speaking, a HWT is a very-hard-to-detect mod-
ification of a design that remains silent most of the time,
although in a specific (usually rare) working condition it alters
the nominal behavior of the system. HWTs may be inserted at
several stages and levels of abstraction: untrusted IP vendors
may sell IP cores infected both at the hardware description
language-level and at netlist-level [8]; a malicious employee
may alter a few lines of code; a CAD tool provided by an un-
trusted software house may maliciously modify the design [9];
finally, untrusted mask providers and silicon foundries may
alter the layout [10].

In the past, HWTs were considered an issue more by
academy than by industry because of the difficulty of insertion
in real-world large circuits and because of their reduced
complexity and limited dangerousness. In the very last years,
complex HWTs have been found in real microprocessors:
existing HWTs may allow the attackers to execute their own
malicious software, to modify the running software, or to
acquire root privileges [11], [12]. Finally, in 2018, security
researchers demonstrated the presence of a hardware back-
door, called the Rosenbridge backdoor, on a commercial Via
Technologies C3 processor [13]. This hardware backdoor is
activated and exploited via software to enter in supervisor
mode. The reality of this attack makes HWTs a serious threat
not only for industries also.

In the last two decades, a very large number of techniques
for detection and prevention of HWTs have been proposed
considering several attack scenarios, threat models and design
stages where a HWT can be inserted [14]. Recently, software-
based runtime solutions for HWTs prevention and detection
have been proposed ([15], [16]). In [15] tasks are scheduled
in such a way that tasks that directly exchange data are not
executed by cores belonging to the same vendor, making
collusion between 3PIPs impossible, and thus preventing the
activation of HWTs. In [16], a genetic algorithm is employed
to obfuscate the software before its execution, thus making
HWT activation and information stealing extremely unlikely.

However, the same effort has not been devoted to the
definition of standardized and commonly recognized methods
and metrics to measure the effectiveness of such detection

and prevention methodologies [17]. Recently, Trust-Hub con-
tributed to the hardware security community with a set of
92 Trojan-infected circuits [18], [19]. This benchmark suite
contains HWTs of varying size, inserted at various stages of
the design process, thus representing a valuable effort to allow
researchers to test their detection methodologies. Nevertheless,
such a small set of benchmarks presents several limitations:
(i) a small, static set of benchmarks may bias researchers
to tune their methodologies to detect those HWTs only; (ii)
Trust-Hub benchmarks contain only very few HWT-infested
microprocessors; and (iii) the HWT-infested microprocessors
available on Trust-Hub only belong to two microprocessor
models. Very recently, the proposal in [20] tried to overcome
these limitations by proposing a tool for the automated in-
sertion of HWTs into a netlist. Although this is a valuable
step forward, this tool only works at netlist level and it injects
HWTs in the circuit without taking into account the actual
controllability of the HWT.

In this paper we present HATE, a HArdware Trojan Em-
ulation environment, addressing the analysis of the security
vulnerabilities due to Hardware Trojans into microprocessor-
based systems. Starting from the HWT-infested micropro-
cessors available on Trust-Hub [21] we generalized them
to build the HWT models considered by HATE. Given a
software to be executed on a microprocessor, HATE aims at
identifying the ability of the software to activate HWTs on
the microprocessor. Like for well-known and well-established
fault-injection tools, the rationale behind HATE is to provide
designers of microprocessor-based systems with a flexible tool
for HWT-injection. The designer can specify the target HW
platform as well as the the SW to be executed during the
analysis and the HWT models to be injected. The outcome
of such a HWT-injection analysis is twofold: on the one
hand the tool can be used to understand when/how a given
HWT (or a given set of HWTs) is activated by a software
running on a microprocessor. On the other hand, HATE can
be used to assess the effectiveness of (innovative) detection
techniques against a set of generated HWTs (either randomly
or not) in microprocessors. Additionally, HATE allows the
designer to inspect several parameters of the microprocessor’s
behavior and status during execution that could be of interest
for vulnerability analyses, e.g., the number of times a register
changes its value, the number of times each instruction is
executed, number of I/O operations.

The proposed environment can actually be an alternative
to having a large set of HWT-infested benchmark circuits, be-
cause it actually allows for an in-depth analyses, thus partially
mitigating the limitations of the reduced number of HWT-
infested benchmark circuits currently available, also aiming at
contributing to the definition of metrics for standardized and
recognized evaluation campaigns for HWT detection method-
ologies Moreover, we deem this proposal to be timely as the
number of new proposals for software-based runtime solutions
for HWTs prevention and detection is rapidly increasing, and
HATE can be used to investigate their effectiveness.

The remainder of this paper is organized as follows: Sec-

tion II introduces the considered threat model; Sections III
presents the HATE environment; Section IV discusses a set of
experiments that have been carried out to show the potentiali-
ties and the performance of HATE on a subset of the MiBench
test programs [22]; finally Section V concludes the paper.

II. THREAT MODEL

A rough classification may dividle HWTs into change-
functionality, denial-of-service and information-stealing ones.
For the first two classes we can reasonably assume that the
effect of the HWT will always be visible once the triggering
condition has been activated, otherwise the attack would not
be effective. On the other hand, for the information-stealing
HWTs we can assume that the effect of the HWT will never
be visible (from the point of view of the original functionality)
after the activation of the HWT itself, otherwise the stealing
would not be as stealthy as such kind of attacks require.

Thus, unlike in classical fault testing, where the generated
test patterns need to activate the fault and then to propagate its
effect to either a primary output or a flip-flop, when looking
at change-functionality or denial-of-service HWTs, it is safe
to assume that no logical or electric masking hides the effect
of the Trojan once it has been activated. Similarly, we may
assume that, when looking at information-stealing HWTs, no
input values will expose the stealthy undesired behavior of
the HWT. Given the above considerations, we argue that to
evaluate if a software suffers from the presence of a HWT
it suffices to evaluate its capability of activating the HWT
without taking into account the payload.

According to the classification proposed in [23], HATE con-
siders HWTs (both combinational and sequential) triggered by
values (or combinations of values) in the microprocessor logic,
memory or I/O, and inserted during any design phase/at any
abstraction level. Do note that, always-on HWTs, time bomb
HWTs, HWTs triggered externally through covert channels,
and HWTs triggered by internal physical conditions of the
microprocessor (e.g., temperature and voltage) fall outside of
the scope of our work.

III. HATE: THE HARDWARE TROJAN EMULATION
ENVIRONMENT

HATE emulates the presence of HWTs into a micropro-
cessor and support the analysis to determine whether a given
software running on the microprocessor can trigger the HWTs.
Our goal is to propose a software tool that can be used by
microprocessors and software designers when dealing with
hardware security and trust in the same way they use classical
fault injection tools when dealing with reliability and test. The
idea is to allow the designers of HWTs detection techniques
to perform HWTs injection campaigns to automatically and
thoroughly assess the effectiveness of their technique without
having to rely on the few publicly available HWT examples.
In this way it would be possible to measure the amount of
“injected” HWTs the given technique can detect.

A high-level representation of the HATE environment is
depicted in Figure 1. It is composed of an Execution Dump

Microprocessor
under analysis

Program
. -
Assembly File Execution Dump
Generator
LI
L7
EDG

Configuration File

L,

Architecture
Description

Hardware Trojan
Generator

L7
HTG

Microprocessor
State Analyzer

_>
Execution Dumps T
77

Generated
Hardware Trojans

Microprocessor
State Report

Hardware Trojan
Finder —‘

Trojan Analysis
Report

4

Custom
Hardware Trojans

Configuration File

Fig. 1. The HATE Environment

Generator (EDG), a Hardware Trojan Generator (HTG), a
Hardware Trojan Finder (HTF) and a Microprocessor State
Analyzer (MSA). EDG extracts a set of execution traces from
the executions of the software under analysis while running on
the specific hardware platform the designer wants to address.
HTG generates the list of HWTs to be injected. It is worth
mentioning that apart from randomly-generated HWTs, the
HWTs to be injected can also be manually specified when
the designer wants to analyse specific HWTs. HTF analyses
the previously generated executions traces, looking for the
triggering conditions of the HWTs of interest and generates a
detailed report on the activated HWTs and the microprocessor
conditions when occurred. Finally, MSA monitors the internal
state of the microprocessor and traces the runtime values of a
number of parameters of interest.

A. The Implemented Hardware Trojan Models

The complexity of modern microprocessors provides a huge
number of possibilities of HWTs insertion. Nevertheless, for
the attack to succeed it is mandatory that the inserted HWT
is controllable by the attacker, which means that there must
exist stealthy but still easy-to-access ways to activate the HWT.
By taking as a reference the 11 HWT-infested microprocessor
examples available on Trust-Hub [21] (seven 8051 processors
and four Microchip PIC16F84 microcontrollers) we can iden-
tify HWTs activated by specific data read from I/O interfaces
(e.g., the UART interface) and HWTs activated by specific
sequences of executed instructions.

Starting from the real-world HWT-infested microprocessors
available on Trust-Hub we derived a set of HWT models to be
implemented in the HATE environment and to be customized

by the designer before the HWT-injection campaign. In par-
ticular, when modeling the needed HWT controllability for
activating it, we mimicked the Trust-Hub circuits, and the set
of considered triggering mechanisms, at present, includes: (i)
specific combinations of values (or sequences of combinations
of values) of the microprocessor’s registers, (ii) specific values
(or sequences of values) stored/loaded in specific I/O interfaces
or memory addresses and (iii) specific sequences of executed
instructions.

We do not consider HWTs triggered by specific internal
signals or internal states of the microprocessor that are not
visible between two instruction executions. Such triggering
mechanisms would certainly be very hard-to-detect for detec-
tion techniques but also very hard-to-control by the attacker
himself/herself.

Given the flexibility of the proposed framework, it is possi-
ble to add new triggering mechanisms that the user might be
interested in.

B. The Execution Dump Generator

The preliminary step for the HATE analysis is the collection
of one or more execution dumps of the execution of the
considered software on the microprocessor under analysis.
This execution is necessary to collect the microprocessor’s
resource status and registers’ values. The Execution Dump
Generator takes in input the assembly code of the software
to be analyzed and a configuration file that specifies the
number of executions to be traced and the input data for each
execution. The EDG interacts with the GNU Debugger (GDB):
the software is executed in debug mode and at each instruction
execution the content of all CPU registers is collected and
stored, creating the dump for all requested runs (an excerpt of

28 add fp, sp, #4
r0 0x1 1

rl Oxbefff0a4 3204444324
r2 OxbefffOac 3204444332
r3 0x1043c 66620

r4 0x1045¢ 66652

r5 0x0 0

r6 0x10314 66324

r7 0x0 0

r8 0x0 0

r9 0x0 0

r10 0xb6fff000 3070226432
rll 0x0 0

rl2 OxbeffefdO 3204444112
sp Oxbeffefd8 Oxbeffef48
Ir 0Oxb6e7b678 —1226328456
pc 0x10440 0x10440 <main+4>
cpsr 0x60000010 1610612752

Fig. 2. An excerpt of an execution dump on an ARM v6 core

execution dump on an ARM v6 core is shown in Figure 2).
These dumps are then used by the remaining modules to
perform their analyses.

As mentioned, EDG requires the availability of the GNU
Debugger. EDG can either be executed on the specific mi-
croprocessor under analysis, or, if not available, it can also
be run on top of a simulation environment emulating the
target microprocessor, e.g., the gemS environment [24]. The
remaining components of HATE take in input the description
of the target architecture but can be executed on any processing
platform.

C. The Hardware Trojan Generator

The Hardware Trojan Generator is in charge of randomly
generating a set of HWTs to be used in the subsequent detec-
tion analysis. As previously discussed, the HATE environment
models HWTs in terms of their triggering mechanism: we
considered all the HWT-infested microprocessors available on
Trust-Hub and we generalized them to build the following set
of models of HWT triggers’:

e HWT-Type I: a specific set of values in a specific set of
registers; this models combinational HWTs infesting the
CPU registers.

o HWT-Type 2: a specific sequence of values in a specific
set of registers; this models sequential HWTs infesting
the CPU registers.

o« HWI-Type 3: a specific sequence of instructions and (pos-
sibly) associated operands; this models sequential HWTs
infesting the fetch, decode and ALU/FPU modules.

o HWT-Type 4: a specific value read/written from one I/O
interface or memory location; this models combinational
HWTs infesting the data/address bus.

2HATE can be extended to integrate additional HWT models.

e HWT-Type 5: a specific sequence of values read/written
from specific I/O interfaces or memory locations; this
models sequential HWTs infesting the data/address bus.

HTG takes in input a description of the microprocessor
architecture in terms of CPU registers and instruction set, and
a configuration file specifying how many HWTs have to be
generated, the type and, for each one of the HWTs types, the
following information:

o HWT-Type I: the maximum number of triggering registers
Np.

e HWI-Type 2: the maximum number of states of the
sequential HWT Ng and the maximum number of trig-
gering registers Npg.

o HWT-Type 3: the maximum number of states of the
sequential HWT Ng.

e HWT-Type 4: no configuration is needed.

e HWI-Type 5: the maximum number of states of the
sequential HWT Ng.

According to the specified configuration information, HTG
generates the desired number of HWTs by first randomly
determining the type of HWT and then, according to the
selected type, by performing the following operations:

e HWT-Type I: a random number np € [1, Ng| is chosen;
ng random registers are then selected and for each of
them a random value is set.

o HWT-Type 2: a random number ng € [1, Ng] is chosen,
representing the number of states of the sequential HWT;
for each of the ng states the same random information
needed for HWT-Type 1 is created.

o HWT-Type 3: a random number ng € [1, Ng| is chosen
representing the number of states of the sequential HWT;
for each of the ng states a random instruction is chosen
and its operands are randomly set.

o HWT-Type 4: a random value v is set as an operand to
the load/store instruction.

o HWT-Type 5: a random number ng € [1, Ng] is chosen,
representing the number of states of the sequential HWT;
for each of the ng states the same random information
needed for HWT-Type 4 is created.

It is worth mentioning that such a random selection of
the triggering mechanisms for the generated HWTs does not
mean that we model HWTs that are randomly triggered at
runtime. All the random parameters that are chosen by the
HTG to characterize the behavior of the generated HWTs are
randomly chosen at design time, before the HWT-injection.
Indeed, during the actual HWT-simulation, each considered
HWT will have its own specific triggering mechanism.

D. The Hardware Trojan Finder and the Microprocessor State
Analyzer

The last two components of the HATE environment are
the Hardware Trojan Finder and the Microprocessor State
Analyzer. Both components take in input the execution dumps
previously extracted by the EDG component. Additionally,
HTF takes in input two lists of HWTs: the ones randomly

generated by the HTG and, possibly, those manually specified
by the designer.

HTF is devoted to the identification of whether the trig-
gering conditions for both previously randomly generated and
manually specified injected HWT(s) are found in the execution
dump(s). At the end of this process an output file reporting all
activated HWTs and the microprocessor’s working conditions
that activated them is generated (similarly to what happens
after fault injection experiments).

MSA monitors a number of parameters of the micro-
processor functioning during the simulation. By looking at
the execution dumps, MSA reports parameters such as the
number of times the content of each register changes, the
number of I/O instructions and memory load/store executed
instructions, and how many times each instruction is executed.
These parameters can then be used by the designer to analyse
possible vulnerability locations. As for other aspects, the set
of HWT models and monitored parameters can be extended.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of the various components
of HATE when used to analyse different microprocessors and
benchmark programs, while the analysis of the effectiveness
of specific HWT detection techniques falls outside the scope
of the current paper.

We implemented HATE as a set of Bash scripts and C and
Java programs. As a set of demonstrative case study programs
we considered C implementations of BubbleSort (BS),
MatrixMultiplication (MM) and Fibonacci (Fib)
and the MiBench programs QuickSort (QS), Dijkstra
(Di7), SHA, AES, and FFT [22].

To show the portability of HATE we selected two micro-
processors as the target architectures for the analysis: the em-
bedded 1 GHz 32-bit single-core ARM1176JZF-S processor
of a Raspberry Pi Zero board and a Desktop 3.40GHz 64-
bit Intel Core 17-3770. The Execution Dump Generator has
been executed there to collect the traces, while, as previously
discussed, the remaining modules of HATE have been run on
a desktop PC equipped with a 3.40GHz 64-bit Intel Core i7-
3770 processor and 8GB RAM.

A. EDG performance

As a first experiment we analysed the performance of
the Execution Dump Generator. Table I reports the average
execution time (in minutes) for the generation of an execution
dump for the considered benchmarks, compiled with four
different optimization levels for the two considered target pro-
cessors. As expected, the performance of the Execution Dump
Generator depends on the adopted compiler optimization level
as well as on the processing power of the target microprocessor
on which the EDG is run. Nevertheless, the execution time is
always in the order of magnitude of some minutes.

B. HTG performance

The execution time of the HWT Generator does not depend
on the hardware platform under analysis, on the executed

TABLE I
EDG: AVERAGE EXECUTION TIME (IN MINUTES)

ARMI1176JZF-S Intel Core i7-3770
-00 -01 -02 -03 -00 -01 -02 -03
BS 259 076 043 028 || 048 052 0.15 0.13
MM 087 037 034 033 || 0.09 0.04 003 001
Fib | 1.13 041 033 028 || 0.07 0.05 0.05 0.04
0s 1.12 049 048 048 || 0.86 0.67 065 0.63
Dij | 057 045 039 0.21 0.12 0.05 0.03 0.01
SHA | 406 137 136 127 || 0.67 027 045 0.39
AES | 0.89 033 0.11 0.04 || 0.17 0.09 0.03 0.01
FFT | 1.93 132 093 0.1 051 042 038 0.33
TABLE II
HTG: AVERAGE EXECUTION TIME (IN MILLISECONDS)
#of HWTs | Npe[1,3] Nge[l,5] Nre€[l,7 Nge[1,10]
1,000 ‘ 5.02ms 6.83ms 7.40ms 8.76ms

program, nor on the HWT models to be generated but only
on the number of HWTs the designer wants to randomly
generate and on the number of triggers. Table II reports
the execution time (in milliseconds) when generating 1,000
random HWTs having a number of triggers Np in various
ranges. As expected, the execution time increases with the
number of triggers. Nevertheless, even when this number is
possibly large, the generation time is still in the order of
magnitude of some milliseconds.

C. HTF and MSA performance

We analyzed the efficiency of the two output report genera-
tors (HTF and MSA) by measuring the time required to parse
one of the previously extracted executions dumps.

Table IV reports the average execution time (in seconds)
of HTF with respect to different optimization levels, when
considering the 1,000 previously generated HWTs. The time
required to scan the program execution dump depends on the
length of the dump, and thus, on the optimization level. HTF
completes its task in some tenth milliseconds in all cases.

A similar experiment has been carried out to analyse the
performance of the MSA. Table IV reports the execution
time (in seconds) w.r.t. different optimization levels for the
considered programs. As for the analysis carried out by HTF,
also for MSA the time required to scan the program execution
dump depends on the length of the dump, and thus again, on
the optimization level. MSA completed its task in some tenth
milliseconds in all cases.

V. CONCLUSIONS AND DISCUSSION

We presented HATE, a framework for Hardware Trojan
simulation in microprocessors to investigate the vulnerabilities
of a given microprocessor when executing a specific software.
The framework can also be used to evaluate the effectiveness
of software-based techniques for Hardware Trojans detection.
HATE implements a set of HWTs models derived from the

TABLE III
HTF: AVERAGE EXECUTION TIME (IN SECONDS)

Optimization level

-00 -01 -02 -03

BS 0.052s 0.049s 0.036s 0.036s
MM 0.048s 0.042s 0.039s 0.037s
Fib | 0.048s 0.041s 0.040s 0.032s
0s 0.047s 0.032s 0.028s 0.026s
Dij | 0.213s 0.1022 0.0872 0.075s
SHA | 0.868s 0.376s 0.252s 0.149s
AES | 0.354s 0.218s 0.133s 0.096s
FFT | 0.751s 0.448s 0.175s 0.102s

TABLE IV
MSA: AVERAGE EXECUTION TIME (IN SECONDS)

Optimization level

-00 -01 -02 -03

BS 0.123s 0.095s 0.093s 0.027s
MM 0.891s 0.118s 0.079s 0.073s
Fib | 0.095s 0.082s 0.079s 0.076s
0s 0.121s 0.099s 0.098s 0.066s
Dij | 0476s 0.143s 0.107s 0.097s
SHA | 0.859s 0.611s 0.483s 0.402s
AES | 0.752s 0.561s 0.458s 0.348s
FFT | 0.821s 0.587s 0.519s 0.392s

real-world HWT-infested microprocessors that are available
on Trust-Hub. With respect to the limitations exposed by the
available benchmark circuits and the existing automated HWT
insertion tools, HATE offers the following advantages:

o model and inject an unlimited number of HWTs;

o extend the available HWTs models by combining the
existing ones;

« inject multiple HWTs in a single microprocessor;

« inject HWTSs that are actually controllable by the attacker,
thus preventing the analysing low-level HWTs that cannot
be actually triggered;

e analyse any microprocessor architecture provided the
availability of the GDB debugger;

« monitor and collect additional information concerning the
state of the microprocessor’s resources during the HWT
simulation.

Given the huge number of Hardware Trojan detection
techniques and the interest in both attacking and protecting
complex HW systems, and considering the lack of infested
benchmark circuits, automated HWT injection tools and eval-
uation metrics on the other hand, we believe that HATE
represents a step towards a commonly-adopted tool to help
the Hardware Security community in the evaluation of the
vulnerabilities of given microprocessor architectures and in
the assessment of the effectiveness of strengthening techniques
and in their tuning/improvement.

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]
[22]

[23]

[24]

REFERENCES

DIGITIMES, “Trends in the global IC design service market.”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in Proc. Int. Conf. Computer-Aided
Design, pp. 819-823, 2013.

Mohammad Tehranipoor and Cliff Wang, Introduction to Hardware
Security and Trust. Springer-Verlag New York, 2012.

U. Guin, Z. Zhou, and A. Singh, “A novel design-for-security (dfs)
architecture to prevent unauthorized ic overproduction,” in 2017 IEEE
35th VLSI Test Symposium (VTS), pp. 1-6, 2017.

U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8, pp. 1207-
1228, 2014.

A. P. Donlin, P. Sundararajan, and B. J. New, “Method and system for
secure exchange of ip cores,” Aug. 2010. US Patent 7,788,502.

M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. Hardware-Oriented Security and
Trust, pp. 67-70, 2011.

J. A. Roy, F. Koushanfar, and I. L. Markov, “Extended abstract: Circuit
cad tools as a security threat,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008.

G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in Cryptographic Hardware and Em-
bedded Systems, 2013.

Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
pp. 131-134, 2012.

N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead
malicious modifications enabling modern microprocessor privilege es-
calation,” IEEE Trans. Emerging Topics in Computing, vol. 2, no. 1,
pp. 81-93, 2014.

https://github.com/xoreaxeaxeax/rosenbridge.

S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection
techniques,” in Proc. Int. Symp. on Circuits and Systems, pp. 2021—
2024, 2015.

C. Liu, J. Rajendran, C. Yang, and R. Karri, “Shielding heterogeneous
mpsocs from untrustworthy 3pips through security- driven task schedul-
ing,” IEEE Trans. on Emerging Topics in Computing, vol. 2, no. 4,
pp. 461-472, 2014.

A. Marcelli, E. Sanchez, G. Squiller, M. U. Jamal, A. Imtiaz, S. Ma-
chetti, F. Mangani, P. Monti, D. Pola, A. Salvato, and M. Simili,
“Defeating hardware trojan in microprocessor cores through software
obfuscation,” in Proc. Latin-American Test Symp., pp. 1-6, 2018.

K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Trans. Design Automation of Electronic Systems, 2016.

B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, 2017.

H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability anal-
ysis and trust benchmarks development,” in Proc. Int. Conf. Computer
Design, pp. 471-474, 2013.

J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated configurable
trojan insertion framework for dynamic trust benchmarks,” in Proc.
Design, Automation & Test in Europe Conf.), pp. 1610-1615, 2018.
Trust Hub. www.trust-hub.org.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proc. Int. Workshop on Workload Characteriza-
tion), pp. 3-14, 2001.

R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: Identifying and classifying hardware trojans,” Computer,
vol. 43, no. 10, pp. 39-46, 2010.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1-7, Aug. 2011.

