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Abstract 
The purpose of this document is to provide verification and validation of key computations in RMC-
TotalRisk. Software verification involves comparison of the numerical solution generated by the code 
with theoretical and analytical solutions, or with other known numerical solutions. Verification ensures 
that the software accurately solves the equations that constitute the mathematical model. RMC-
TotalRisk has three main components that required verification: 1) general numerical methods; 2) input 
functions; and 3) quantitative risk analysis. The numerical components were verified against theoretical 
solutions and Monte Carlo simulation, as well as several prominent software used in industry. In all 
cases, the computations in RMC-TotalRisk performed as intended.  
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Introduction 
The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC) developed the quantitative 
risk analysis software (RMC-TotalRisk) to enhance and expedite risk assessments within the Flood Risk 
Management, Planning, and Dam and Levee Safety communities of practice. 

RMC-TotalRisk is a menu-driven software, which performs risk analysis from user defined hazard, system 
response, and consequence functions. The software features a fully integrated modelling platform, 
including a modern graphical user interface, data entry capabilities, report quality charts, and 
diagnostics. TotalRisk can perform multi-failure risk analysis for a single dam or levee or for a complex 
system with multiple components.  

The purpose of this document is to provide verification of critical RMC-TotalRisk computations. Software 
verification involves comparison of the numerical solution generated by the code with one or more 
analytical solutions, or other numerical solutions. Verification ensures that the software accurately 
solves the equations that constitute the mathematical model. 

The RMC-TotalRisk software uses two dynamic link libraries (dll) for performing numerical analyses: 
Numerics.dll and RMC.TotalRisk.dll. Numerics is a numerical library for .NET, which provides methods 
and algorithms for numerical computations in science and engineering. Numerics includes routines for 
special functions, interpolation, statistics, random numbers, probability distributions, uncertainty 
analysis, integration, optimization, root finding, and more. RMC.TotalRisk is a model library for the RMC-
TotalRisk software, written in the .NET framework, which contains all remaining necessary functionality 
for input functions and quantitative risk analysis. Both libraries were developed internally by the RMC 
and, as such, the numerical methods contained within these libraries need to be verified.  

The RMC-TotalRisk software has three main components that required verification: 1) general numerical 
methods; 2) input functions; and 3) quantitative risk analysis. Numerical verification for each component 
is detailed in the remaining chapters of this report. 

Performance Metrics 
Every verification test provided in this report is assessed using the following percent difference formula: 

% 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �
𝑥𝑥2 − 𝑥𝑥1
𝑥𝑥1

� ∙ 100 Equation 1 

where 𝑥𝑥2 is the value computed from Numerics or RMC-TotalRisk; and 𝑥𝑥1 is the actual value (or “true” 
value) from either an analytical or numerical solution. All values in Numerics and TotalRisk are computed 
with double precision, but results are reported with varying levels of precision depending on the test.   

Target performance metrics depend on the test type as shown in Table 1. Verification tests for general 
numerical methods have the strictest performance requirements. A percent difference greater than 1% 
is considered unsatisfactory. The general numerical methods should produce exact results, with the 
exception being numerical integration and differentiation methods since these are approximate in 
nature.  
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Table 1 - Performance Ratings for different verification test types. 

Test Type Very Good Satisfactory Unsatisfactory 
Verification of Numerical Methods % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0 0 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 1 %𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > 1 
Verification of Input Functions 0 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 1 1 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 5 %𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > 5 
Verification of Risk Analysis 0 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 1 1 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 5 %𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > 5 
Comparison with other Risk Software 0 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 1 1 < % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 5 %𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 > 5 

 

The remaining verification test types have more relaxed performance requirements. For these remaining 
tests, a percent difference greater than 5% is considered unsatisfactory. The input function and risk 
analysis numerical methods have either a Monte Carlo component or an approximate numerical method 
component. These methods are approximate in nature and can produce different results depending on 
pseudo-random number generators, sample size, and software design choices.  

In general, the goal of this verification effort was for all tests to have less than 1% difference. However, 
percent differences less than five percent are considered satisfactory, particularly when comparing risk 
analysis results from different software. Differences greater than five percent were generally considered 
unsatisfactory. All verification results and comparisons with differences greater than five percent 
required additional analysis and justification. 

In the report, the verification test results are provided in tables, and the percent difference cells are 
colored based on the performance ranges in Table 1. An example of the conditional formatting is shown 
in Figure 1. Perfect agreement, or zero percent difference, is colored green. One percent difference is 
colored white. Percent differences greater than or equal to five are colored red.  

 

Figure 1 - Microsoft Excel© conditional formatting for percent difference. 
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Verification of General Numerical Methods 
The Numerics library is used to perform a variety of general numerical methods in RMC-TotalRisk. 
Numerics.dll is a numerical library for .NET, which provides methods and algorithms for numerical 
computations in science and engineering, with a focus on statistical methods. Numerics.dll includes 
routines for special functions, interpolation, regression, statistics, probability distributions, bootstrap 
uncertainty analysis, Bayesian Markov Chain Monte Carlo, optimization, root finding, and more. 

The Numerics library includes hundreds of individual verification tests (commonly referred to as unit 
tests) to ensure the software performs as intended. Numerics can be downloaded from GitHub1 and is 
free to the public.  

This report only provides verification of the general numerical methods considered to be important for 
RMC-TotalRisk. These include linear interpolation, probability distribution functions, numerical 
integration, numerical differentiation, and linear regression.  

Linear Interpolation 
In RMC-TotalRisk, the input functions can be defined with either parametric or nonparametric methods. 
All nonparametric function calculations are performed using linear interpolation. For example, a 
nonparametric (or empirical) probability distribution has the following distribution functions: 

𝐹𝐹(𝑥𝑥) = 𝑝𝑝𝑖𝑖 + (𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖) �
𝑥𝑥 − 𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖

� Equation 2 

𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �
𝑝𝑝 − 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖+1 − 𝑝𝑝𝑖𝑖

� Equation 3 

where 𝐹𝐹(𝑥𝑥) is the cumulative distribution function (CDF) of the variable 𝑋𝑋; 𝐹𝐹−1(𝑝𝑝) is the inverse CDF; 
and there is an array of continuous values 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} with non-exceedance probabilities 𝒑𝒑 =
{𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛}. The 𝒙𝒙 values and non-exceedance probabilities 𝒑𝒑 must be sorted in ascending order 𝑥𝑥𝐷𝐷 <
𝑥𝑥𝐷𝐷+1 and 𝑝𝑝𝐷𝐷 ≤ 𝑝𝑝𝐷𝐷+1 with 0 ≤ 𝑝𝑝𝑖𝑖 ≤ 1. 

There is often a benefit to applying a transform to the 𝒙𝒙 and 𝒑𝒑 values to improve the accuracy of the 
linear interpolation. For example, if the 𝒙𝒙 values increase exponentially in real-space, then they will 
increase linearly in log-space. In this case, a log-transform will improve the accuracy of the linear 
interpolation of 𝒙𝒙 values. 

A log-transform can be applied to the 𝒙𝒙 and/or 𝒑𝒑 values. For example, when the exceedance 
probabilities are log-transformed, the inverse CDF becomes: 

𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �
log𝑝𝑝 − log 𝑝𝑝𝑖𝑖

log𝑝𝑝𝑖𝑖+1 − log𝑝𝑝𝑖𝑖
� Equation 4 

In addition, a Normal 𝑧𝑧 transform can be applied to the 𝒑𝒑 values as follows:  

 
1 https://github.com/USACE-RMC  
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𝐹𝐹−1(𝑝𝑝) = 𝑥𝑥𝑖𝑖 + (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)�
Φ−1(𝑝𝑝) −Φ−1(𝑝𝑝𝑖𝑖)
Φ−1(𝑝𝑝𝑖𝑖+1) −Φ−1(𝑝𝑝𝑖𝑖)

� Equation 5 

where Φ−1(∙) is the inverse CDF of the standard Normal distribution.  

Table 2 provides an example tabular response function. The 𝒙𝒙 values represent hazard levels, such as 
river stage, and the 𝒑𝒑 values represent conditional probabilities of failure at each hazard level. The 
response function is shown in Figure 2. 

Table 2 - Example tabular response function data. 

X Values P Values 
50 0.001 

100 0.010 
150 0.100 
200 0.700 
250 0.950 
300 0.999 

  

  

Figure 2 - Example tabular response function. 

The Numerics.dll implements the smart table searching and interpolation algorithms described in 
Numerical Recipes [1]. In addition, Numerics.dll allows transforms on both variables. The Numerics.dll 
contains 21 tests for linear interpolation, which includes tests for the smart search routines and for all 
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possible combinations of transforms. For the sake of brevity, this report only provides three of these 
tests. The other test results can be found in the Numerics download.  

Numerical verification was performed using the R ‘stats’ package2. For the first verification test, 
interpolation was performed with no transforms on the 𝒙𝒙 and 𝒑𝒑 values. Results are provided in Table 3, 
where RMC-TotalRisk has perfect agreement with the R ‘stats’ package. 

For the next test, the probability 𝒑𝒑 values were log (base 10) transformed. Figure 3 shows the response 
function with the probabilities plotted on a logarithmic axis. Since the smaller probabilities plot in a 
straight line, the log-transform provides a more accurate linear interpolation in that range. Verification 
results are provided in Table 4, again showing perfect agreement.  

Table 3 - Linear Interpolation results. 

X Values R ‘stats’ Numerics % Difference 
76 0.00568 0.00568 0.0% 
80 0.00640 0.00640 0.0% 
96 0.00928 0.00928 0.0% 

162 0.24400 0.24400 0.0% 
170 0.34000 0.34000 0.0% 
216 0.78000 0.78000 0.0% 

 

  

Figure 3 - Example tabular response function with probability plotted on logarithmic axis. 

 
2 https://www.rdocumentation.org/packages/stats/versions/3.6.2  
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Table 4 - Linear Interpolation results with logarithmic transform on probability values. 

X Values R ‘stats’ Numerics % Difference 
76 0.00331 0.00331 0.0% 
80 0.00398 0.00398 0.0% 
96 0.00832 0.00832 0.0% 

162 0.15952 0.15952 0.0% 
170 0.21779 0.21779 0.0% 
216 0.77186 0.77186 0.0% 

 

In the final test, the probability 𝒑𝒑 values were transformed using the Normal z-variates. Figure 4 shows 
the response function with the probabilities plotted on a Normal probability axis. Since the function 
plots in nearly a straight line, the Normal z-variate transform provides a more accurate linear 
interpolation across all probability values. Verification results are provided in Table 5, once again 
showing perfect agreement. Example code for replicating these linear interpolation problems with R 
‘stats’ is provided in Figure 5 below.  

 

Figure 4 - Example tabular response function with probability plotted on Normal probability axis. 
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Table 5 - Linear Interpolation results with Normal z-variate transform on probability values. 

X Values R ‘stats’ Numerics % Difference 
76 0.00354 0.00354 0.0% 
80 0.00425 0.00425 0.0% 
96 0.00848 0.00848 0.0% 

162 0.19818 0.19818 0.0% 
170 0.28802 0.28802 0.0% 
216 0.81137 0.81137 0.0% 

 

library(stats) 
 
# The tabular x and y data 
Xvalues = c(50, 100, 150, 200, 250, 300) 
Pvalues = c(0.001, 0.01, 0.1, 0.7, 0.95, 0.999) 
 
# The numeric values specifying where interpolation is to take place 
Xout = c(76, 80, 96, 162, 170, 216) 
 
# Perform linear interpolation 
Pout = approx(x = Xvalues, y = Pvalues, xout = Xout)$y 
print(Pout) 
# [1] 0.00568 0.00640 0.00928 0.24400 0.34000 0.78000 
 
# Perform linear interpolation with log10 transformed p-values 
Pout = approx(x = Xvalues, y = log10(Pvalues), xout = Xout)$y 
Pout = 10^Pout # transform back to real-space. 
print(Pout) 
# [1] 0.003311311 0.003981072 0.008317638 0.159523081 0.217790642 0.771859442 
 
# Perform linear interpolation with Normal z-variate transformed p-values 
Pout = approx(x = Xvalues, y = qnorm(p=Pvalues), xout = Xout)$y 
Pout = pnorm(q=Pout) # transform back to real-space. 
print(Pout) 
# [1] 0.003540482 0.004245422 0.008482656 0.198184718 0.288022602 0.811367143 

Figure 5 – Example code for performing linear interpolation with the R ‘stats’ package. 
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Probability Distributions 
RMC-TotalRisk provides up to twenty different probability distributions for various input function 
options. The technical reference manual [2] provides a detailed description of each distribution and 
their typical applications.  

All probability distribution functionality in RMC-TotalRisk is contained within Numerics. The Numerics 
library includes individual verification tests for all the probability distribution functions and methods. 
Comprehensive verification documentation for most these distributions is provided in the RMC-BestFit 
report [3].  

Table 6 provides a listing of all the probability distributions and their verification sources. This report 
only provides verification of the CDF and inverse CDF of the remaining distributions (shown in blue in 
Table 6), since these are the only functions used by RMC-TotalRisk. Verification was performed using the 
R packages listed in Table 6. 

Table 6 - Listing of probability distributions and verification sources. 

Distribution Verification Source 
Exponential RMC-BestFit Report 
Gamma RMC-BestFit Report 
Generalized Beta R ‘mc2d’ 
Generalized Extreme Value RMC-BestFit Report 
Generalized Logistic RMC-BestFit Report 
Generalized Normal R ‘lmom’ 
Generalized Pareto RMC-BestFit Report 
Gumbel RMC-BestFit Report 
Kappa-4 R ‘lmom’ 
Logistic RMC-BestFit Report 
Log-Normal RMC-BestFit Report 
Log-Pearson Type III RMC-BestFit Report 
Normal RMC-BestFit Report 
Nonparametric RMC-BestFit Report 
Pearson Type III RMC-BestFit Report 
PERT R ‘mc2d’ 
Triangular R ‘mc2d’ 
Truncated Normal R ‘truncnorm’ 
Uniform R ‘stats’ 
Weibull RMC-BestFit Report 

 

The Generalized Beta, PERT, and Triangular distributions were verified using the R ‘mc2d’ package3. Each 
of these distributions are bounded by lower and upper bounds. In RMC-TotalRisk, these distributions 
will commonly be used to represent uncertainty in a response probability, so they will be bounded 
between 0 and 1. The CDF was evaluated at five different 𝑥𝑥 values. Then, the inverse CDF was evaluated 
by inputting the resulting probabilities from the CDF to ensure it returns the same 𝑥𝑥 values. Verification 

 
3 https://cran.r-project.org/web/packages/mc2d/index.html 
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results for these three distributions are provided in Table 7 through Table 12. In each case, Numerics has 
perfect agreement with the R ‘mc2d’ package. Example code for replicating these distribution tests with 
R ‘mc2d’ is provided in Figure 6 below.  

Table 7 - Verification of the CDF of the Generalized Beta distribution. 

X Values R ‘mc2d’ Numerics % Difference 
0.10 0.271000 0.271000 0.0% 
0.25 0.578125 0.578125 0.0% 
0.50 0.875000 0.875000 0.0% 
0.75 0.984375 0.984375 0.0% 
0.90 0.999000 0.999000 0.0% 

 

Table 8 - Verification of the inverse CDF of the Generalized Beta distribution. 

P Values R ‘mc2d’ Numerics % Difference 
0.271000 0.10 0.10 0.0% 
0.578125 0.25 0.25 0.0% 
0.875000 0.50 0.50 0.0% 
0.984375 0.75 0.75 0.0% 
0.999000 0.90 0.90 0.0% 

 

Table 9 - Verification of the CDF of the PERT distribution. 

X Values R ‘mc2d’ Numerics % Difference 
0.10 0.0814600 0.0814600 0.0% 
0.25 0.3671875 0.3671875 0.0% 
0.50 0.8125000 0.8125000 0.0% 
0.75 0.9843750 0.9843750 0.0% 
0.90 0.9995400 0.9995400 0.0% 

 

Table 10 - Verification of the inverse CDF of the PERT distribution. 

P Values R ‘mc2d’ Numerics % Difference 
0.0814600 0.10 0.10 0.0% 
0.3671875 0.25 0.25 0.0% 
0.8125000 0.50 0.50 0.0% 
0.9843750 0.75 0.75 0.0% 
0.9995400 0.90 0.90 0.0% 
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Table 11 - Verification of the CDF of the Triangular distribution. 

X Values R ‘mc2d’ Numerics % Difference 
0.10 0.0400000 0.0400000 0.0% 
0.25 0.2500000 0.2500000 0.0% 
0.50 0.6666667 0.6666667 0.0% 
0.75 0.9166667 0.9166667 0.0% 
0.90 0.9866667 0.9866667 0.0% 

 

Table 12 - Verification of the inverse CDF of the Triangular distribution. 

P Values R ‘mc2d’ Numerics % Difference 
0.0400000 0.10 0.10 0.0% 
0.2500000 0.25 0.25 0.0% 
0.6666667 0.50 0.50 0.0% 
0.9166667 0.75 0.75 0.0% 
0.9866667 0.90 0.90 0.0% 

 

library(mc2d) 
 
# CDF of the Generalized Beta distribution 
x = c(0.1, 0.25, 0.5, 0.75, 0.9) 
p = pbetagen(q = x, shape1 = 1, shape2 = 3, min = 0, max = 1) 
# [1] 0.271000 0.578125 0.875000 0.984375 0.999000 
 
# Inverse CDF of the Generalized Beta 
qbetagen(p = p, shape1 = 1, shape2 = 3, min = 0, max = 1) 
# [1] 0.10 0.25 0.50 0.75 0.90 
 
# CDF of the PERT distribution 
p = ppert(q = x, min = 0, mode = 0.25, max = 1) 
# [1] 0.0814600 0.3671875 0.8125000 0.9843750 0.9995400 
 
# Inverse CDF of the PERT 
qpert(p = p, min = 0, mode = 0.25, max = 1) 
# [1] 0.10 0.25 0.50 0.75 0.90 
 
# CDF of the Triangular distribution 
p = ptriang(q = x, min = 0, mode = 0.25, max = 1) 
# [1] 0.0400000 0.2500000 0.6666667 0.9166667 0.9866667 
 
# Inverse CDF of the Triangular 
qtriang(p = p, min = 0, mode = 0.25, max = 1) 
# [1] 0.10 0.25 0.50 0.75 0.90 

Figure 6 – Example code for using probability distributions with the R ‘mc2d’ package. 
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The Generalized Normal and Kappa-4 distributions were verified using the R ‘lmom’ package4. These 
distributions are commonly used for flood frequency analysis [4]. In RMC-TotalRisk, they can be used 
when creating a parametric hazard function. The CDF was evaluated at five different 𝑥𝑥 values. Then, the 
inverse CDF was evaluated by inputting the resulting probabilities from the CDF to ensure it returns the 
same 𝑥𝑥 values. Verification results for these distributions are provided in Table 13 through Table 16. In 
each case, Numerics has perfect agreement with the R ‘lmom’ package. Example code for replicating 
these distribution tests with R ‘lmom’ is provided in Figure 7 below.  

Table 13 - Verification of the CDF of the Generalized Normal distribution. 

X Values R ‘lmom’ Numerics % Difference 
5 0.07465069 0.07465069 0.0% 

10 0.53400804 0.53400804 0.0% 
12 0.73775928 0.73775928 0.0% 
15 0.92073519 0.92073519 0.0% 
18 0.98333335 0.98333335 0.0% 

 

Table 14 - Verification of the inverse CDF of the Generalized Normal distribution. 

P Values R ‘lmom’ Numerics % Difference 
0.07465069 5 5 0.0% 
0.53400804 10 10 0.0% 
0.73775928 12 12 0.0% 
0.92073519 15 15 0.0% 
0.98333335 18 18 0.0% 

 

Table 15 - Verification of the CDF of the Kappa-4 distribution. 

X Values R ‘lmom’ Numerics % Difference 
5 0.07168831 0.07168831 0.0% 

10 0.53317660 0.53317660 0.0% 
12 0.73279234 0.73279234 0.0% 
15 0.91293987 0.91293987 0.0% 
18 0.97980084 0.97980084 0.0% 

 

Table 16 - Verification of the inverse CDF of the Kapp-4 distribution. 

P Values R ‘lmom’ Numerics % Difference 
0.07168831 5 5 0.0% 
0.53317660 10 10 0.0% 
0.73279234 12 12 0.0% 
0.91293987 15 15 0.0% 
0.97980084 18 18 0.0% 

 
4 https://cran.r-project.org/web/packages/lmom/index.html 
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library(lmom) 
 
# CDF of the Generalized Normal (GNO) distribution  
x = c(5, 10, 12, 15, 18) 
p = cdfgno(x = x, para = c(9.7, 3.5, -0.1)) 
# [1] 0.07465069 0.53400804 0.73775928 0.92073519 0.98333335 
 
# Inverse CDF of the GNO 
# This should return the x values used with the CDF 
quagno(f = p, para = c(9.7, 3.5, -0.1)) 
# [1]  5 10 12 15 18 
 
# CDF of the Kappa-4 (K4) distribution 
p = cdfkap(x = x, para = c(8.7, 3.1, 0.14, -0.1)) 
# 0.07168831 0.53317660 0.73279234 0.91293987 0.97980084 
 
# Inverse CDF of the K4 
quakap(f = p, para = c(8.7, 3.1, 0.14, -0.1)) 
# [1]  5 10 12 15 18 

Figure 7 – Example code for using probability distributions with the R ‘lmom’ package. 

Finally, the Truncated Normal and Uniform distributions were verified using the R ‘truncnorm’ and R 
‘stats’ package5, respectively. Both distributions are bounded by lower and upper bounds. In RMC-
TotalRisk, these distributions will commonly be used to represent uncertainty in a response probability, 
so they will be bounded between 0 and 1. Verification results for these distributions are provided in 
Table 17 through Table 20. In each case, Numerics has perfect agreement with the R packages. Example 
code for replicating these distribution tests with R is provided in Figure 8 below.  

Table 17 - Verification of the CDF of the Truncated Normal distribution. 

X Values R ‘truncnorm’ Numerics % Difference 
0.10 0.1341936 0.1341936 0.0% 
0.25 0.3761035 0.3761035 0.0% 
0.50 0.7522070 0.7522070 0.0% 
0.75 0.9474634 0.9474634 0.0% 
0.90 0.9887291 0.9887291 0.0% 

Table 18 - Verification of the inverse CDF of the Truncated Normal distribution. 

P Values R ‘truncnorm’ Numerics % Difference 
0.1341936 0.10 0.10 0.0% 
0.3761035 0.25 0.25 0.0% 
0.7522070 0.50 0.50 0.0% 
0.9474634 0.75 0.75 0.0% 
0.9887291 0.90 0.90 0.0% 

 
5 https://cran.r-project.org/web/packages/truncnorm/index.html  
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Table 19 - Verification of the CDF of the Uniform distribution. 

X Values R ‘stats’ Numerics % Difference 
0.10 0.10 0.10 0.0% 
0.25 0.25 0.25 0.0% 
0.50 0.50 0.50 0.0% 
0.75 0.75 0.75 0.0% 
0.90 0.90 0.90 0.0% 

 

Table 20 - Verification of the inverse CDF of the Uniform distribution. 

P Values R ‘stats’ Numerics % Difference 
0.10 0.10 0.10 0.0% 
0.25 0.25 0.25 0.0% 
0.50 0.50 0.50 0.0% 
0.75 0.75 0.75 0.0% 
0.90 0.90 0.90 0.0% 

 

library(truncnorm) 
 
# CDF of the Truncated Normal distribution 
x = c(0.1, 0.25, 0.5, 0.75, 0.9) 
p = ptruncnorm(q = x, a = 0, b = 1, mean = 0.25, sd = 0.3) 
# [1] 0.1341936 0.3761035 0.7522070 0.9474634 0.9887291 
 
# Inverse CDF of the Truncated Normal 
qtruncnorm(p = p, a = 0, b = 1, mean = 0.25, sd = 0.3) 
# [1] 0.10 0.25 0.50 0.75 0.90 
 
library(stats) 
 
# CDF of the Uniform distribution 
x = c(0.1, 0.25, 0.5, 0.75, 0.9) 
p = punif(q = x, min = 0, max = 1) 
# [1] 0.10 0.25 0.50 0.75 0.90 
 
# Inverse CDF of the Uniform 
qunif(p = p, min = 0, max = 1) 
# [1] 0.10 0.25 0.50 0.75 0.90 

Figure 8 – Example code for using probability distributions with the R ‘truncnorm’ and ‘stats’ packages. 
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Numerical Integration 
In RMC-TotalRisk, within every Monte Carlo realization for every system component, risk is computed 
using numerical integration. In the technical reference manual [2], risk is formally defined as the 
expected value of consequences 𝔼𝔼[𝐶𝐶], which is calculated as: 

𝔼𝔼[𝐶𝐶] =  � 𝐶𝐶(𝑥𝑥)
∞

−∞

∙ 𝐷𝐷�𝐶𝐶(𝑥𝑥)� ∙ 𝑑𝑑𝑥𝑥  Equation 6 

where 𝑥𝑥 is the hazard level (e.g., flood discharge or water level); 𝐶𝐶(𝑥𝑥) determines the consequences, 
such as property damage or life loss, for the hazard level 𝑥𝑥; and 𝐷𝐷�𝐶𝐶(𝑥𝑥)� is the probability density 
function (PDF) of the consequences occurring. 

Computing risk for multiple system components requires integration over a multidimensional integral. 
Consider a system with two components, where the consequences of failure from each component are 
additive. Following the general risk formula provided in Equation 6, the system risk becomes a two-
dimensional integral: 

𝔼𝔼[𝐶𝐶]Ω =  � � {𝐶𝐶𝑋𝑋(𝑥𝑥) + 𝐶𝐶𝑌𝑌(𝑦𝑦)} ∙ 𝐷𝐷𝑋𝑋𝑌𝑌�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� ∙ 𝑑𝑑𝑥𝑥 ∙ 𝑑𝑑𝑦𝑦
∞

−∞

∞

−∞

  Equation 7 

where 𝑥𝑥 is the hazard level for system component 𝑋𝑋; 𝐶𝐶𝑋𝑋(𝑥𝑥) determines the consequences for the 
hazard level 𝑥𝑥; 𝑦𝑦 is the hazard level for system component 𝑌𝑌; 𝐶𝐶𝑌𝑌(𝑦𝑦) determines the consequences for 
the hazard level 𝑦𝑦; and 𝐷𝐷𝑋𝑋𝑌𝑌�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� is the joint PDF of the combined system consequences 
occurring.  

Single Dimension Integration 
In RMC-TotalRisk, single dimension integrals like Equation 6 are solved using an implementation of the 
Adaptive Simpson’s Rule (ASR) method. The ASR algorithm subdivides the interval of integration in a 
recursive manner until a user-defined tolerance is achieved. The default tolerance level is 1𝐷𝐷−8. More 
details are provided in [2] and [5].  

The numerical integration functionality in RMC-TotalRisk is contained within Numerics. Verification of 
the numerical integration was performed using six analytical example problems of varying complexity 
with known solutions. The goal of each verification test is to approximate the definite integral: 

𝐼𝐼 = �𝐷𝐷(𝑥𝑥) ∙
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑥𝑥 
 Equation 8 

The first example is a simple function with a single variable: 

𝐷𝐷(𝑥𝑥) = 𝑥𝑥3  Equation 9 

Integrating from 𝑎𝑎 = 0 to 𝑏𝑏 = 1, the exact solution is: 
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�𝐷𝐷(𝑥𝑥)
1

0

𝑑𝑑𝑥𝑥 =
1
4
𝑥𝑥4 �10 =

1
4
∙ 14 − 0 = 0.25 

 Equation 10 

The ASR method will give exact results for 3rd degree (or less) polynomials. The ASR method required 
only 5 function evaluations to converge with a standard error of 0.  

Table 21 - Numerical integral results for example 1. 

Exact Solution Numerics % Difference 
0.25 0.25 0.0% 

 

The next example integrates the following function: 

𝐷𝐷(𝑥𝑥) = cos 𝑥𝑥  Equation 11 

from 𝑎𝑎 = −1 to 𝑏𝑏 = 1. The exact integral is: 

�𝐷𝐷(𝑥𝑥)
1

−1

𝑑𝑑𝑥𝑥 = sin 𝑥𝑥 � 1
−1 = 2sin 1 = 1.6829419 … 

 Equation 12 

The ASR method required 65 function evaluations to converge with a standard error < 1𝐷𝐷−7. 

Table 22 - Numerical integral results for example 2. 

Exact Solution Numerics % Difference 
1.6829419 1.6829419 0.0% 

 

The next example integrates: 

𝐷𝐷(𝑥𝑥) = 0.5 + 24𝑥𝑥 + 3𝑥𝑥2  Equation 13 

from 𝑎𝑎 = 0 to 𝑏𝑏 = 2. The exact integral is: 

�𝐷𝐷(𝑥𝑥)
2

0

𝑑𝑑𝑥𝑥 = (0.5𝑥𝑥 + 12𝑥𝑥2 + 𝑥𝑥3) �20 = (0.5 ∙ 2 + 12 ∙ 22 + 23) − 0 = 57 
 Equation 14 

The ASR method required 5 function evaluations to converge with a standard error of 0. 

Table 23 - Numerical integral results for example 3. 

Exact Solution Numerics % Difference 
57 57 0.0% 

The next example integrates: 
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𝐷𝐷(𝑥𝑥) = 0.5 + 24𝑥𝑥 + 3𝑥𝑥2 + 8𝑥𝑥3  Equation 15 

from 𝑎𝑎 = 0 to 𝑏𝑏 = 2. The exact integral is: 

�𝐷𝐷(𝑥𝑥)
2

0

𝑑𝑑𝑥𝑥 = (0.5𝑥𝑥 + 12𝑥𝑥2 + 𝑥𝑥3 + 2𝑥𝑥4) �20 = (0.5 ∙ 2 + 12 ∙ 22 + 23 + 2 ∙ 24) − 0 = 89  Equation 16 

The ASR method required 5 function evaluations to converge with a standard error of 0. 

Table 24 - Numerical integral results for example 4. 

Exact Solution Numerics % Difference 
89 89 0.0% 

 

The next two examples are more relevant for computations with RMC-TotalRisk. In the next example, 
the goal is to compute the mean of a Gamma distribution with a scale of 𝜃𝜃 = 10 and shape of 𝜅𝜅 = 5, 
which is simply 𝜃𝜃 ∙ 𝜅𝜅 = 50. The function to integrate is: 

𝜇𝜇 = 𝔼𝔼[𝑋𝑋] = � 𝑥𝑥 ∙ 𝐷𝐷(𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥
∞

−∞

  Equation 17 

𝐷𝐷(𝑥𝑥) =
1

Γ(𝜅𝜅)𝜃𝜃𝜅𝜅
𝑥𝑥𝜅𝜅−1𝐷𝐷−

𝑥𝑥
𝜃𝜃   Equation 18 

The ASR method required 393 function evaluations to converge with a standard error < 1𝐷𝐷−6. 

Table 25 - Numerical integral results for example 5. 

Exact Solution Numerics % Difference 
50 50 0.0% 

 

The final example for single dimension integration is to compute the conditional expected value of a Ln-
Normal distribution with a real-space mean of 𝜇𝜇𝑥𝑥 = 10 and standard deviation 𝜎𝜎𝑥𝑥 = 2. The 
corresponding log-space mean and standard deviation are 𝜇𝜇 = 2.282975 and 𝜎𝜎 = 0.198042. For more 
details on the Ln-Normal distribution, please see the technical reference manual [2].  

A conditional expectation is defined as the expected value of a random variable given that this value lies 
within some prescribed probability range [6]: 

𝔼𝔼[𝑋𝑋|𝑋𝑋 ≥ 𝛽𝛽] =
1

1 − 𝐹𝐹(𝛽𝛽)� 𝑥𝑥 ∙ 𝐷𝐷(𝑥𝑥) ∙ 𝑑𝑑𝑥𝑥
∞

𝛽𝛽

  Equation 19 

where 𝐷𝐷(∙) is the PDF; and 𝐹𝐹(∙) is the CDF. 
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where 𝐷𝐷(∙) is the PDF; and 𝐹𝐹(∙) is the CDF. The threshold value 𝛽𝛽 can be defined by a specified 
nonexceedance probability 𝛼𝛼, such as 𝛼𝛼 = 0.99, rather than a threshold value, 𝛽𝛽. In this case, 𝛽𝛽 =
 𝐹𝐹−1(𝛼𝛼). The exact solution for the expectation of a Ln-Normal distribution conditioned on 𝑋𝑋 ≥ 𝛽𝛽 is 
provided by: 

𝔼𝔼[𝑋𝑋|𝑋𝑋 ≥ 𝛽𝛽] =
𝐷𝐷𝜇𝜇+

𝜎𝜎2
2

1 − 𝛼𝛼
∙ �1 −Φ(Φ−1(𝛼𝛼) − 𝜎𝜎)� 

 Equation 20 

where Φ(∙) is the CDF of the standard Normal distribution; Φ−1(∙) is the inverse CDF; and 𝜇𝜇 and 𝜎𝜎 are 
the log-space mean and standard deviation, respectively.  

The ASR method required 89 function evaluations to converge with a standard error < 1𝐷𝐷−6. 

Table 26 - Numerical integral results for example 6. 

Exact Solution Numerics % Difference 
16.65587 16.65587 0.0% 

 

Additional verification was performed using the R ‘stats’ package. Example code for replicating these 
three example problems with R ‘stats’ is provided in Figure 9 below. In each case, RMC-TotalRisk 
produced the same results as the R ‘stats’ package. The package reports the absolute error, which is 
approximately the same as the square of the standard error reported by the Numerics ASR method.  

Multidimensional Integration 
Solving multidimensional integrals is computationally demanding. If traditional, nonadaptive numerical 
integration techniques were used, the solution would require 𝐾𝐾𝐷𝐷 iterations, where 𝐾𝐾 is the number of 
integration steps (or bins) and 𝐷𝐷 is the number of dimensions. If there were 100 integration steps and 5 
dimensions, the solution would need 10 billion iterations. To avoid these computational limitations, 
RMC-TotalRisk uses an adaptive importance sampling algorithm called VEGAS [7] [8]. More details on 
this method can be found in [1], [2], and [9].  

The VEGAS algorithm implemented in RMC-TotalRisk has two steps. First, to establish and refine the 
importance sampling histogram, by default the routine performs five warmup cycles, each with a 
maximum of 1,000 ∙ 𝐷𝐷 integrand evaluations. For instance, if 𝐷𝐷 = 2 , by default there are 10,000 total 
warmup evaluations. Next, again by default, 10,000 final integrand evaluations are performed. The 
solution and resulting standard error are based only on the final evaluations. The user can add more 
function evaluations to achieve a smaller standard error. 

Verification of the multidimensional integration was performed using four analytical example problems 
of varying complexity with known solutions. The goal of each verification test is to approximate the 
definite integral: 

𝐼𝐼 = � ⋯ � 𝐷𝐷(𝑥𝑥1,⋯ , 𝑥𝑥𝐷𝐷)

𝑏𝑏𝐷𝐷

𝑎𝑎𝐷𝐷

∙

𝑏𝑏1

𝑎𝑎1

𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥𝐷𝐷  
 Equation 21 

DRAFT



27 
 

The first example is a simple 2-dimensional problem for computing 𝜋𝜋: 

𝐷𝐷(𝑥𝑥,𝑦𝑦) = �1, 𝑥𝑥2 + 𝑦𝑦2 < 1
0, 𝑥𝑥2 + 𝑦𝑦2 ≥ 1

  Equation 22 

Integrating from 𝑎𝑎 = {−1,−1} to 𝑏𝑏 = {1, 1}, the exact solution is 𝜋𝜋 = 3.141593 …. 

library(stats) 
 
# Example 1 
fx1 = function(x){return(x^3)} 
integrate(f = fx1, lower = 0, upper = 1, rel.tol = 1E-8) 
# 0.25 with absolute error < 2.8e-15 
 
# Example 2 
fx2 = function(x){return(cos(x))} 
integrate(f = fx2, lower = -1, upper = 1, rel.tol = 1E-8) 
# 1.682942 with absolute error < 1.9e-14 
 
# Example 3 
fx3 = function(x){return(0.5 + 24 * x + 3 * x * x)} 
integrate(f = fx3, lower = 0, upper = 2, rel.tol = 1E-8) 
# 57 with absolute error < 6.3e-13 
 
# Example 4 
fx4 = function(x){return(0.5 + 24 * x + 3 * x * x + 8 * x * x * x)} 
integrate(f = fx4, lower = 0, upper = 2, rel.tol = 1E-8) 
# 89 with absolute error < 9.9e-13 
 
# Example 5 
fx5 = function(x){return(x*dgamma(x=x, shape = 10, scale=5))} 
integrate(f = fx5, lower = qgamma(p=1E-16, shape = 10, scale = 5), upper = qgamma(p=1-1E-16, shape 
= 10, scale = 5), rel.tol = 1E-8) 
# 50 with absolute error < 1e-10 
 
# Example 6 
# Get log parameters 
mu = 10; sigma = 2; var = sigma^2 
lmu = log(mu^2 / sqrt(var + mu^2)) 
lsigma = sqrt(log(1.0 + var / mu^2)) 
fx6 = function(x){return(x*dlnorm(x=x, meanlog = lmu, sdlog = lsigma))} 
 
I=integrate(f = fx6, lower = qlnorm(p=0.99, meanlog = lmu, sdlog = lsigma), upper = qlnorm(p=1-1E-
16, meanlog = lmu, sdlog = lsigma), rel.tol = 1E-8) 
I$value / (1 - 0.99) 
# [1] 16.65587 

Figure 9 – Example code for performing numerical integration for a single dimension with the R ‘stats’ package. 
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Table 27 shows the VEGAS results for this first example. Since VEGAS is an advanced Monte Carlo 
integration method, the results are approximate in nature. The precision can be assess using the 
standard error of result (more details are provided in [1], [7] and [8]). The standard error of the VEGAS 
solution is 𝜎𝜎 = 0.004019 and the 90% confidence interval around the result is provided in parentheses. 
The exact solution is contained within this interval.  

Table 27 - VEGAS results for example 1. 

Exact Solution Numerics % Difference 

3.141593 3.141074 
(3.134463, 3.147684) 0.0% 

 

The next problem follows the example provided in by the GNU Scientific Library6. The example is a 3-
dimensional integral from the theory of random walks: 

𝐷𝐷(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
1

𝜋𝜋3[1 − cos(𝑥𝑥) ∙ cos(𝑦𝑦) ∙ cos(𝑧𝑧)]  Equation 23 

Integrating from 𝑎𝑎 = {0, 0, 0} to 𝑏𝑏 = {𝜋𝜋,𝜋𝜋,𝜋𝜋}, the exact solution is given by: 

Γ �1
4�

4

4𝜋𝜋3
= 1.393204 … 

 Equation 24 

where Γ(∙) is the Gamma function. The VEGAS results are provided in Table 28. The standard error is 
𝜎𝜎 = 0.007161 and the 90% confidence interval around the result is provided in parentheses. The exact 
solution is contained within this interval.  

Table 28 - VEGAS results for example 2. 

Exact Solution Numerics % Difference 

1.393204 1.389101  
(1.37732, 1.400881) 0.3% 

 

The remaining two examples are more relevant for system risk computations with RMC-TotalRisk. The 
goal is to compute the mean of the sum of independent Normal distributions for 5-dimensions and 20-
dimensions. A listing of the mean and standard deviations of the Normal distributions are provided in 
Table 29 below. The multidimensional function to integrate is as follows: 

𝐷𝐷(𝑥𝑥1,⋯ , 𝑥𝑥𝐷𝐷) = �𝑥𝑥𝑘𝑘

𝐷𝐷

𝑘𝑘=1

∙�𝜙𝜙(𝑥𝑥𝑘𝑘|𝜇𝜇𝑘𝑘 ,𝜎𝜎𝑘𝑘)
𝐷𝐷

𝑘𝑘=1

 
 Equation 25 

where 𝜙𝜙(∙) is the PDF of the 𝑘𝑘-th Normal distribution with a mean 𝜇𝜇𝑘𝑘  and standard deviation 𝜎𝜎𝑘𝑘. The 
integration limits are 𝑎𝑎 = {Φ−1(1𝐷𝐷−16|𝜇𝜇1,𝜎𝜎1),⋯ ,Φ−1(1𝐷𝐷−16|𝜇𝜇𝐷𝐷,𝜎𝜎𝐷𝐷)} and 𝑏𝑏 = {Φ−1(1 −

 
6 https://www.gnu.org/software/gsl/doc/html/montecarlo.html  
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1𝐷𝐷−16|𝜇𝜇1,𝜎𝜎1),⋯ ,Φ−1(1 − 1𝐷𝐷−16|𝜇𝜇𝐷𝐷 ,𝜎𝜎𝐷𝐷)}, where Φ−1(∙) is the inverse CDF of the 𝑘𝑘-th Normal 
distribution. In other words, the integration limits cover the full probability domain from ~0 to ~1. The 
exact solution to the mean of the sum of Normally distributed random variables is: 

𝔼𝔼[𝑋𝑋] = �𝜇𝜇𝑘𝑘

𝐷𝐷

𝑘𝑘=1

 
 Equation 26 

So, the mean of the sum of the first five distributions is: 

𝔼𝔼[𝑋𝑋] = 10 + 30 + 17 + 99 + 68 = 224  Equation 27 

The exact solution to the sum of all twenty distributions is 837. 

Table 29 - Normal distribution mean and standard deviations. 

Distribution Mean, 𝝁𝝁 Std. Deviation, 𝝈𝝈 
1 10 2 
2 30 15 
3 17 5 
4 99 14 
5 68 7 
6 26 24 
7 35 29 
8 55 22 
9 13 22 

10 59 1 
11 12 3 
12 28 28 
13 49 19 
14 54 18 
15 20 4 
16 47 24 
17 12 23 
18 76 26 
19 70 26 
20 57 19 
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The VEGAS results are provided in Table 30 and Table 31, and the standard errors are 𝜎𝜎 = 0.027803  
and 0.097398, respectively. In both cases, the exact solution is contained within the 90% confidence 
interval. 

Table 30 - VEGAS results for example 3. 

Exact Solution Numerics % Difference 

224 223.984867 
(223.939135, 224.030599) 0.0% 

 

Table 31 - VEGAS results for example 4. 

Exact Solution Numerics % Difference 

837 836.965827 
(836.805622, 837.126033) 0.0% 

 

RMC-TotalRisk permits an unlimited number of failure modes per system component. However, a single 
system is limited to 20 components due to virtual memory and computer runtime limitations. Therefore, 
the 20-dimension verification test shown above provides a stress test to the TotalRisk computation 
engine. The VEGAS method used in RMC-TotalRisk is capable of accurately estimating high-dimensional 
integrals.  

An additional verification was performed using the R ‘cubature’ package7. Example code for replicating 
the 5-dimension example problem is provided in Figure 10 below. RMC-TotalRisk produced more 
accurate results than the R ‘cubature’ package while requiring fewer function evaluations, which 
indicates that the VEGAS implementation in Numerics is efficient and robust.  

 

 

 

 

 

 

 

 

 

 

 

 
7 https://cran.r-project.org/web/packages/cubature/index.html  
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library(cubature) 
 
# Array of distribution mean and standard deviations 
mu = c(10, 30, 17, 99, 68) 
sigma = c(2, 15, 5, 14, 7) 
 
# Computes the mean of the sum of independent Normal distributions 
sumNormal = function(x){ 
  sum = 0 
  prod = 1 
  for (i in 1:5){ 
    sum = sum + x[i] 
    prod = prod * dnorm(x = x[i], mean = mu[i], sd = sigma[i]) 
  } 
  return(sum*prod) 
} 
 
# Get integration limits 
lower = numeric(5) 
upper = numeric(5) 
for (i in 1:5){ 
  lower[i] = qnorm(p = 1E-16, mean = mu[i], sd = sigma[i]) 
  upper[i] = qnorm(p = 1 - 1E-16, mean = mu[i], sd = sigma[i]) 
} 
 
# Perform integration 
vegas(sumNormal, lowerLimit = lower, upperLimit = upper, flags=list(verbose=0, final=1)) 
# $integral 
# [1] 223.9502 
# $error 
# [1] 0.4381816 
# $neval 
# [1] 1007500 

Figure 10 – Example code for performing numerical integration for multidimensions with the R ‘stats’ package. 
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Numerical Differentiation 
In RMC-TotalRisk, a derivative-based sensitivity analysis is provided for the event tree and risk analysis 
components of the software. The partial derivative measures how sensitive an output component 𝐷𝐷 is 
with respect to an input parameter 𝜃𝜃𝑖𝑖 when all other input parameters are held fixed. 

𝜕𝜕𝐷𝐷
𝜕𝜕𝜃𝜃𝑖𝑖

 (𝐷𝐷 = 1,2,⋯ ,𝐷𝐷)  Equation 28 

In RMC-TotalRisk, the partial derivatives are evaluated using numerical differentiation with the two-
point formula: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝜃𝜃

=
𝐷𝐷(𝜃𝜃 + ℎ) − 𝐷𝐷(𝜃𝜃 − ℎ)

2ℎ
 

Equation 29 

where ℎ represents a small change in 𝜃𝜃. The step size value ℎ is automatically determined according to 
the magnitude of the function input parameter: 

ℎ = �|𝑥𝑥| ∙ 𝜖𝜖
1
2, 𝑥𝑥 ≠ 0

𝜖𝜖
1
2, 𝑥𝑥 = 0

 Equation 30 

Where 𝑥𝑥 is the input parameter; and 𝜖𝜖 is the double precision machine epsilon.  

The numerical derivative functionality in RMC-TotalRisk is contained within Numerics. Verification of the 
numerical differentiation was performed using three analytical functions with known solutions. The first 
example is a simple function with a single variable: 

𝐷𝐷(𝑥𝑥) = 𝑥𝑥3 Equation 31 

Differentiating with respect to 𝑥𝑥 gives the following: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

= 3𝑥𝑥2 Equation 32 

Evaluating the function at 𝑥𝑥 = 2, yields a derivative equal to 12: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

= 3 ∙ 22 = 12 
Equation 33 

 

Table 32 - Numerical derivative results for example 1. 

Derivative Exact Solution Numerics % Difference 
𝜕𝜕𝐷𝐷 𝜕𝜕𝑥𝑥⁄  12.00 12.00 0.0% 

 

DRAFT



33 
 

The second example is a function with two variables: 

𝐷𝐷(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2𝑦𝑦3 Equation 34 

Differentiating with respect to each variable gives: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

= 2𝑥𝑥𝑦𝑦3 Equation 35 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑦𝑦

= 3𝑥𝑥2𝑦𝑦2 
Equation 36 

Evaluating the function at 𝑥𝑥 = 2 and 𝑦𝑦 = 2, yields partial derivatives equal to 32 and 48, respectively: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

= 2 ∙ 2 ∙ 23 = 32 Equation 37 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑦𝑦

= 3 ∙ 22 ∙ 22 = 48 
Equation 38 

 

Table 33 - Numerical derivative results for example 2. 

Derivative Exact Solution Numerics % Difference 
𝜕𝜕𝐷𝐷 𝜕𝜕𝑥𝑥⁄  32.00 32.00 0.0% 

𝜕𝜕𝐷𝐷 𝜕𝜕𝑦𝑦⁄  48.00 48.00 0.0% 
 

The third example is a function with three variables: 

𝐷𝐷(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥3 + 𝑦𝑦4 + 𝑧𝑧5 Equation 39 

Differentiating with respect to each variable gives: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

= 3𝑥𝑥2 Equation 40 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑦𝑦

= 4𝑦𝑦3 
Equation 41 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑧𝑧

= 5𝑧𝑧4 
Equation 42 
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Evaluating the function at 𝑥𝑥 = 2, 𝑦𝑦 = 2 and 𝑧𝑧 = 2, yields partial derivatives equal to 12, 32, and 80, 
respectively: 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑥𝑥

= 3 ∙ 22 = 12 Equation 43 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑦𝑦

= 4 ∙ 23 = 32 
Equation 44 

𝜕𝜕𝐷𝐷
𝜕𝜕𝑧𝑧

= 5 ∙ 24 = 80 
Equation 45 

 

Table 34 - Numerical derivative results for example 3. 

Derivative Exact Solution Numerics % Difference 
𝜕𝜕𝐷𝐷 𝜕𝜕𝑥𝑥⁄  12.00 12.00 0.0% 

𝜕𝜕𝐷𝐷 𝜕𝜕𝑦𝑦⁄  32.00 32.00 0.0% 

𝜕𝜕𝐷𝐷 𝜕𝜕𝑧𝑧⁄  80.00 80.00 0.0% 
 

In each case, Numerics and RMC-TotalRisk produced the correct solution with an absolute error of 
approximately ±1𝐷𝐷−8. Additional verification was performed using the R ‘numDeriv’ package8. Example 
code for replicating these three example problems with R ‘numDeriv’ is provided in Figure 11 below. In 
each case, RMC-TotalRisk produced the same results as the R ‘numDeriv’ package.  

  

 
8 https://cran.r-project.org/web/packages/numDeriv/index.htm  
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library(numDeriv) 
 
# Example 1 - One variable function 
fx = function(x){ 
  return(x^3) 
} 
 
# The grad function returns the partial derivatives with respect to each input 
grad(func=fx, x=2) 
# [1] 12 
 
# Example 2 - Two variable function 
fxy = function(p){ 
  x = p[1] 
  y = p[2] 
  return(x^2*y^3) 
} 
 
grad(func=fxy, x=c(2,2)) 
# [1] 32 48 
 
# Example 3 - Three variable function 
fxyz = function(p){ 
  x = p[1] 
  y = p[2] 
  z = p[3] 
  return(x^3+y^4+z^5) 
} 
 
grad(func=fxyz, x=c(2,2,2)) 
# [1] 12 32 80 

Figure 11 – Example code for performing numerical differentiation with the R ‘numDeriv’ package. 
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Linear Regression 
In the risk analysis component of RMC-TotalRisk, it is challenging to compute the partial derivatives of 
the output with respect to each input. Instead, the sensitivity index is derived from a linear regression of 
inputs and output from a Monte Carlo simulation. For each Monte Carlo realization, the sampled inputs 
𝜃𝜃 and the resulting output 𝑦𝑦 are stored in a matrix. Then, a multiple linear regression is estimated as: 

𝑦𝑦 = �𝛽𝛽𝑖𝑖𝜃𝜃𝑖𝑖 + 𝜀𝜀
𝑛𝑛

𝑖𝑖=1

  Equation 46 

where the regression coefficient 𝛽𝛽𝑖𝑖 measures the effect that input 𝜃𝜃𝑖𝑖 has on the predicted value 𝑦𝑦; and 𝜀𝜀 
is the model error, or residual. 

The linear regression functionality in RMC-TotalRisk is contained within Numerics. Verification of the 
linear regression was performed using the R ‘stats’ package. The regression example uses the ‘uschange’ 
dataset from the R ‘fpp2’ package9 [10], which provides growth rates of personal consumption and 
personal income in the USA.  

The first verification test is just a simple linear equation that models consumption as a function of 
income. The next test models consumption as a function of income, production, savings, and the 
unemployment rate for the US. Results are provided in Table 35 and Table 36, respectively. The 
regression results from Numerics have perfect agreement with the R ‘stats’ package. Example code for 
performing linear regression in R is provided in Figure 12 below.  

Table 35 - Verification results for linear regression for a simple linear model. 

Coefficients R ‘stats’ Numerics % Difference 
Intercept 0.54510 0.54510 0.0% 
Income 0.28060 0.28060 0.0% 
Standard Error 0.60261 0.60261 0.0% 

 

Table 36 - Verification results for linear regression for a linear model with multiple covariates. 

Coefficients R ‘stats’ Numerics % Difference 
Intercept 0.26729 0.26729 0.0% 
Income 0.71449 0.71449 0.0% 
Production 0.04589 0.04589 0.0% 
Savings -0.04527 -0.04527 0.0% 
Unemployment -0.20477 -0.20477 0.0% 
Standard Error 0.32860 0.32860 0.0% 

  

 
9 https://cran.r-project.org/web/packages/fpp2/index.html  
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library(fpp2) 
library(stats) 
 
# The first example is a simple linear regression 
simpleLM = lm(formula = Consumption ~ Income, data = uschange) 
summary(simpleLM) 
 
# Residuals: 
#          Min          1Q     Median          3Q         Max  
# -2.40845 -0.31816  0.02558  0.29978  1.45157  
#  
# Coefficients: 
#                      Estimate Std. Error t value Pr(>|t|)     
# (Intercept)  0.54510    0.05569   9.789  < 2e-16 *** 
# Income       0.28060    0.04744   5.915 1.58e-08 *** 
# --- 
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
#  
# Residual standard error: 0.6026 on 185 degrees of freedom 
# Multiple R-squared:  0.159, Adjusted R-squared:  0.1545  
# F-statistic: 34.98 on 1 and 185 DF,  p-value: 1.577e-08 
 
# The next example is a multiple linear regression 
multipleLM = lm(formula = Consumption ~ Income + Production + Savings + Unemployment, data = 
uschange) 
summary(multipleLM) 
 
# Residuals: 
#          Min           1Q   Median          3Q          Max  
# -0.88296 -0.17638 -0.03679  0.15251  1.20553  
#  
# Coefficients: 
#                              Estimate Std. Error t value Pr(>|t|)     
# (Intercept)           0.26729    0.03721   7.184 1.68e-11 *** 
# Income                 0.71449    0.04219  16.934  < 2e-16 *** 
# Production           0.04589    0.02588   1.773   0.0778 .  
# Savings                -0.04527    0.00278 -16.287  < 2e-16 *** 
# Unemployment -0.20477    0.10550  -1.941   0.0538 .  
# --- 
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
#  
# Residual standard error: 0.3286 on 182 degrees of freedom 
# Multiple R-squared:  0.754, Adjusted R-squared:  0.7486  
# F-statistic: 139.5 on 4 and 182 DF,  p-value: < 2.2e-16 

Figure 12 – Example code for performing linear regression with the R ‘stats’ package.  

DRAFT



38 
 

Verification of Input Functions 
RMC-TotalRisk has the following key model inputs: 1) hazard functions; 2) transform function; 3) system 
response functions; and 4) consequence functions. The input functions can be defined with parametric 
or nonparametric methods.  

Most of the parametric input functions use parametric probability distributions, which were already 
verified in the previous section. Most of the nonparametric functions rely on linear interpolation, which 
was also verified in the previous section. The following sections describe the additional input function 
components that required further verification.  

Parametric Bootstrap 
In RMC-TotalRisk, the hazard and response functions can be defined as either a parametric or 
nonparametric distribution. The parametric bootstrap [11] [12] is used to quantify uncertainty in the 
parametric distributions. The bootstrap procedure involves the following general steps: 

1. Randomly sample 𝐷𝐷 values from the user-defined probability distribution, or parent distribution, 
where 𝐷𝐷 is equal to the effective record length (ERL). This is called the bootstrap sample.  
 

2. Estimate a new distribution from the bootstrap sample. The distribution can be estimated with 
product moments, linear moments, or maximum likelihood. See [4], [13], and [14] for more 
details on these estimation and fitting methods for distributions.  
 

3. Record quantiles for desired nonexceedance probabilities, and any other output of interest. 
 

4. Repeat steps 1 through 3 for a sufficiently large number of realizations, 𝑅𝑅. Then, derive 
confidence intervals by computing percentiles from the bootstrapped array for the desired 
output.  

More details on how the parametric bootstrap is used in RMC-TotalRisk can be found in the technical 
reference manual [2]. The parametric bootstrap analysis and resulting confidence intervals were verified 
using the R ‘boot’ package10 for a Log-Normal (base 10) distribution. Figure 13 shows the input options 
for an example Log-Normal parametric hazard function. The distribution has a mean (of log) of 3.0 and 
standard deviation (of log) of 0.5, and the ERL is 100. The bootstrap was performed using 10,000 
realizations, and the 90% confidence interval was output for each user-defined exceedance probability.  

Figure 14 shows a frequency curve plot comparing the bootstrap confidence interval results from RMC-
TotalRisk to the R ‘boot’ package. Table 37 lists the confidence interval results and the percent 
difference between the two software programs. It is clear from these results that RMC-TotalRisk 
produces effectively identical confidence intervals to those of R ‘boot’. Any differences in results are due 
to minor differences that arise from pseudo-random number generators and Monte Carlo sampling 
errors. Example code for replicating this example with R ‘boot’ is provided in Figure 15 below.  

 

 

 
10 https://cran.r-project.org/web/packages/boot/index.html  
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Figure 13 - RMC-TotalRisk inputs for a Log-Normal (base 10) parametric hazard function. 

 

Figure 14 - Comparison of RMC-TotalRisk with R ‘boot’ confidence intervals for the Log-Normal (base 10) distribution.  
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Table 37 - Comparison of RMC-TotalRisk with R 'boot' confidence intervals for the Log-Normal (base 10) distribution. Quantile 
results are shown in log (base 10) space. 

AEP 
5% - CI 95% - CI 

R ‘boot’ RMC-
TotalRisk 

% 
Difference R ‘boot’ RMC-

TotalRisk 
% 

Difference 
1.0E-06 5.664 5.665 0.0% 5.088 5.092 0.1% 
2.0E-06 5.585 5.586 0.0% 5.025 5.029 0.1% 
5.0E-06 5.477 5.478 0.0% 4.938 4.943 0.1% 
1.0E-05 5.392 5.394 0.0% 4.871 4.875 0.1% 
2.0E-05 5.304 5.308 0.1% 4.801 4.805 0.1% 
5.0E-05 5.184 5.187 0.1% 4.705 4.710 0.1% 
1.0E-04 5.088 5.092 0.1% 4.628 4.633 0.1% 
2.0E-04 4.989 4.992 0.1% 4.549 4.552 0.1% 
5.0E-04 4.851 4.854 0.1% 4.437 4.440 0.1% 
1.0E-03 4.741 4.743 0.1% 4.346 4.350 0.1% 
2.0E-03 4.624 4.626 0.0% 4.252 4.255 0.1% 
5.0E-03 4.458 4.458 0.0% 4.116 4.118 0.1% 
1.0E-02 4.320 4.321 0.0% 4.004 4.005 0.0% 
2.0E-02 4.170 4.171 0.0% 3.881 3.882 0.0% 
5.0E-02 3.946 3.948 0.1% 3.695 3.696 0.0% 
1.0E-01 3.749 3.752 0.1% 3.528 3.529 0.0% 
2.0E-01 3.515 3.517 0.0% 3.323 3.325 0.1% 
3.0E-01 3.349 3.350 0.0% 3.171 3.173 0.1% 
5.0E-01 3.082 3.083 0.0% 2.917 2.915 0.0% 
7.0E-01 2.826 2.826 0.0% 2.650 2.649 0.0% 
8.0E-01 2.676 2.676 0.0% 2.483 2.483 0.0% 
9.0E-01 2.472 2.470 0.1% 2.248 2.248 0.0% 
9.5E-01 2.306 2.302 0.2% 2.051 2.051 0.0% 
9.8E-01 2.120 2.117 0.1% 1.828 1.827 0.1% 
9.9E-01 1.998 1.994 0.2% 1.679 1.678 0.1% 
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library(boot) 
 
# This is example code for performing the parametric bootstrap in R. This example estimates 90% 
confidence intervals for a Log-Normal distribution (base 10).  
 
# First define the AEP values for computing the curve and confidence intervals. 
AEPs = c(0.000001, 0.000002, 0.000005, 0.00001, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99) 
 
# Define the parent distribution parameters. 
pMu = 3.0  
pSigma = 0.5  
ERL = 100 
 
# Define a dummy vector of data 
pData = rnorm(n=ERL, mean = pMu, sd = pSigma) 
 
# This function returns the bootstrap sample for each bootstrap realization. 
bootSample = function(data, parms){ 
  # The ‘data’ and ‘parms’ inputs are required by the package. They are not used for this example. 
  return(rnorm(n=ERL, mean = pMu, sd = pSigma)) 
} 
 
# This function returns the bootstrapped vector of the AEPs given the bootstrapped sample. 
bootAEPs = function(data){ 
  # Estimate new bootstrapped parameters from the bootstrap sample using product moments. 
  bMu = mean(data) 
  bSigma = sd(data) 
  bAEPs = numeric(length(AEPs)) 
  for (i in 1:length(AEPs)){ 
    bAEPs[i] = qnorm(p = 1-AEPs[i], mean = bMu, sd = bSigma) 
  } 
  return(bAEPs) 
} 
 
# Perform the parametric bootstrap 
bootstrap = boot(data = pData, ran.gen = bootSample, statistic = bootAEPs,   R = 10000, sim = 
"parametric") 
 
# Estimate the confidence interval for each AEP using the percentile method 
CIs = matrix(nrow = length(AEPs), ncol=2) 
for (i in 1:length(AEPs)){ 
  CIs[i,] = 10^boot.ci(boot.out = bootstrap, conf = 0.9, type = "perc", index = i)$percent[4:5] 
} 

Figure 15 – Example code for performing the parametric bootstrap with the R ‘boot’ package.  
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Nonparametric Hazard Function 
In RMC-TotalRisk, a nonparametric hazard function can be defined in the same way as the “less simple 
method” in the flood damage reduction analysis software, HEC-FDA [15]. This type of hazard function is 
intended to provide backwards compatibility with existing HEC-FDA models for flood risk management 
studies.  

More details on the nonparametric hazard function can be found in the technical reference manual [2]. 
The nonparametric confidence intervals were verified using HEC-FDA version 1.4.311.  

Verification was performed using the ‘Beargrass Creek’ example project provided in the HEC-FDA user 
guide [15] and training course12. The Beargrass Creek study used for that course consists of two highly 
urbanized damage reaches on the South Fork of Beargrass Creek.  

Figure 16 shows the RMC-TotalRisk input options for the South Fork 8 (SF-8) reach for the HEC-FDA 
model. Figure 17 shows the same inputs with HEC-FDA.  

 

 Figure 16 - RMC-TotalRisk inputs for the SF-8 nonparametric hazard function. 

 

 

 
11 https://www.hec.usace.army.mil/software/hec-fda/  
12 Flood Damage Assessment Course Content (army.mil) 
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.  

Figure 17 - RMC-TotalRisk inputs for the SF-8 nonparametric hazard function. 

The uncertainty in the hazard level for a given exceedance probability is derived using the asymptotic 
approximation for quantile variance. A detailed proof is provided in [16] and [17]. Additional details 
related to the HEC-FDA implementation are provided in [15]. Details on the RMC-TotalRisk 
implementation are provided in [2].  

Figure 18 shows a frequency curve plot comparing confidence interval results from RMC-TotalRisk to the 
HEC-FDA confidence intervals. Table 38 lists the confidence interval results and the percent difference 
between the two software programs. RMC-TotalRisk produces confidence intervals that very closely 
match HEC-FDA. The differences in results are primarily due to differences in linear interpolation choices 
and differences in how RMC-TotalRisk computes the probability density of the nonparametric hazard 
function. HEC-FDA interpolates several more points from the user-defined table before developing 
confidence intervals. Whereas RMC-TotalRisk only uses the user-defined values. Results are primarily 
different due to this design choice between software programs.  
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Figure 18 - Comparison of RMC-TotalRisk with HEC-FDA confidence intervals for the nonparametric hazard function.  

 

Table 38 - Comparison of RMC-TotalRisk with HEC-FDA confidence intervals for the nonparametric hazard function. Quantile 
results are shown in log (base 10) space. 

AEP 
-2 SD +2 SD 

HEC-FDA RMC-
TotalRisk 

% 
Difference HEC-FDA RMC-

TotalRisk 
% 

Difference 
1.00E-04 4.216 4.248 0.8% 4.772 4.740 0.7% 
2.00E-03 3.705 3.737 0.9% 4.261 4.229 0.7% 
4.00E-03 3.567 3.599 0.9% 4.123 4.091 0.8% 
1.00E-02 3.514 3.546 0.9% 4.070 4.038 0.8% 
2.00E-02 3.474 3.456 0.5% 3.930 3.948 0.5% 
4.00E-02 3.442 3.445 0.1% 3.801 3.798 0.1% 
1.00E-01 3.328 3.336 0.2% 3.649 3.652 0.1% 
2.00E-01 3.240 3.222 0.5% 3.448 3.424 0.7% 
5.00E-01 3.142 3.136 0.2% 3.204 3.210 0.2% 
9.99E-01 2.894 2.878 0.6% 3.014 3.030 0.5% 
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Tabular Hazard Functions 
For the tabular hazard function, the user is required to enter a tabular relationship of hazard levels and 
exceedance probabilities.  The user can choose to model the exceedance probabilities as uncertain while 
holding the hazard levels as fixed, or vice versa. A distribution must be selected to define uncertainty. 
The parameters for the selected distribution must be entered for every ordinate in the tabular data. The 
uncertainty at each hazard level must be entered such that the confidence intervals are monotonically 
increasing with increasing hazard levels.  

All tabular (nonparametric) functions in RMC-TotalRisk use the same uncertainty analysis algorithm.  In 
short, for each Monte Carlo realization, a single percentile value (e.g., 0.9) is sampled at random. Every 
ordinate in the tabular data is then sampled using the same percentile.  This ensures each tabular 
function in the Monte Carlo simulation is generated with monotonically increasing hazard levels. Please 
see [2] for more details.  

This uncertainty analysis approach is the same as the approach taken in HEC-FDA for graphical or non-
analytic relationships [15]. This algorithm is restrictive in terms of the possible shapes of the 
nonparametric distribution that can be randomly generated, which could lead to a slight overestimation 
or underestimation in the variance of the risk results. However, as discussed in [15], generalizing the 
shape of the distribution requires a parametric representation. In the absence of a parametric shaping 
component, this is currently the best algorithm available for nonparametric uncertainty analysis.  

Verification of the tabular function uncertainty analysis was performed using the theoretical confidence 
intervals for a Normal distribution, which are presented in [18]. The theoretical intervals are as follows: 

𝑥𝑥𝑝𝑝 ± Φ−1 �
1 + 𝛼𝛼

2
� ∙ 𝜎𝜎𝑥𝑥 ∙

�1 + 1
2 ∙ Φ

−1(𝑝𝑝)2

𝑁𝑁
 

 Equation 47 

where 𝑥𝑥𝑝𝑝 is the quantile for the desired nonexceedance probability 𝑝𝑝; 𝜎𝜎𝑥𝑥 is the standard deviation of the 
Normal distribution; 𝑁𝑁 is the effective record length; Φ−1(∙) is the inverse CDF of the standard Normal 
distribution; and 𝛼𝛼 is the confidence interval width (e.g., 0.9). 

Following the previous bootstrap example, the tabular hazard function was derived from a Log-Normal 
distribution with a mean (of log) of 3.0 and standard deviation (of log) of 0.5, and an ERL of 100. Figure 
19 shows how the tabular function data is input into RMC-TotalRisk. For this example, the data was 
entered in log (base 10) space.  The mean values (quantiles) were taken from the inverse CDF of the Log-
Normal distribution. The standard deviation (in log space) at each quantile is: 

𝜎𝜎𝑝𝑝 = 𝜎𝜎𝑥𝑥 ∙
�1 + 1

2 ∙ Φ
−1(𝑝𝑝)2

𝑁𝑁
 

 Equation 48 
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Figure 19 - RMC-TotalRisk inputs for the tabular hazard function. 

The uncertainty analysis was performed using 10,000 Monte Carlo realizations, and the 90% confidence 
interval was output for each user-defined exceedance probability.  Figure 20 shows a frequency curve 
plot comparison, and Table 39 lists the confidence interval results and the percent difference between 
the theoretical result and the tabular hazard function. RMC-TotalRisk produces effectively identical 
confidence intervals to the theoretical result from Equation 47. Any differences in results are due to 
minor Monte Carlo sampling errors. 
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Figure 20 - Comparison of the RMC-TotalRisk tabular hazard function with theoretical confidence intervals for the Log-Normal 
(base 10) distribution 
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Table 39 - Comparison of the RMC-TotalRisk tabular hazard function with theoretical confidence intervals for the Log-Normal 
(base 10) distribution. Quantile results are shown in log (base 10) space. 

AEP 
5% - CI 95% - CI 

Theoretical RMC-
TotalRisk 

% 
Difference Theoretical RMC-

TotalRisk 
% 

Difference 
1.0E-06 5.0883 5.0913 0.1% 5.6651 5.6662 0.0% 
2.0E-06 5.0252 5.0281 0.1% 5.5862 5.5872 0.0% 
5.0E-06 4.9389 4.9416 0.1% 5.4783 5.4793 0.0% 
1.0E-05 4.8711 4.8738 0.1% 5.3937 5.3947 0.0% 
2.0E-05 4.8011 4.8037 0.1% 5.3064 5.3073 0.0% 
5.0E-05 4.7046 4.7070 0.1% 5.1860 5.1869 0.0% 
1.0E-04 4.6281 4.6305 0.1% 5.0909 5.0917 0.0% 
2.0E-04 4.5484 4.5506 0.1% 4.9917 4.9925 0.0% 
5.0E-04 4.4370 4.4391 0.0% 4.8535 4.8543 0.0% 
1.0E-03 4.3475 4.3495 0.0% 4.7428 4.7435 0.0% 
2.0E-03 4.2526 4.2545 0.0% 4.6256 4.6262 0.0% 
5.0E-03 4.1170 4.1188 0.0% 4.4588 4.4594 0.0% 
1.0E-02 4.0048 4.0065 0.0% 4.3215 4.3221 0.0% 
2.0E-02 3.8819 3.8834 0.0% 4.1719 4.1724 0.0% 
5.0E-02 3.6963 3.6976 0.0% 3.9486 3.9490 0.0% 
1.0E-01 3.5298 3.5309 0.0% 3.7518 3.7522 0.0% 
2.0E-01 3.3251 3.3261 0.0% 3.5165 3.5169 0.0% 
3.0E-01 3.1745 3.1754 0.0% 3.3499 3.3502 0.0% 
5.0E-01 2.9178 2.9186 0.0% 3.0822 3.0825 0.0% 
7.0E-01 2.6501 2.6510 0.0% 2.8255 2.8258 0.0% 
8.0E-01 2.4835 2.4845 0.0% 2.6749 2.6752 0.0% 
9.0E-01 2.2482 2.2494 0.1% 2.4702 2.4706 0.0% 
9.5E-01 2.0514 2.0527 0.1% 2.3037 2.3042 0.0% 
9.8E-01 1.8281 1.8296 0.1% 2.1181 2.1187 0.0% 
9.9E-01 1.6785 1.6801 0.1% 1.9952 1.9957 0.0% 
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Event Tree Response Function 
RMC-TotalRisk includes the ability to define a system response function using an event tree. Event tree 
analysis (ETA) represents the logic of how an initiating event, like a flood or earthquake, can lead to 
various types of damage and failure [19]. It is common practice to develop detailed event trees for 
individual PFMs to clearly identify the full sequence of steps required to obtain failure or breach. Each 
identified PFM is decomposed into a sequence of component events and conditions that must occur for 
there to be a failure. More details on the event tree response function can be found in the technical 
reference manual [2].  

The event tree math is straightforward, requiring simple multiplication of node probabilities. However, 
the event tree in RMC-TotalRisk provides comprehensive diagnostics and sensitivity analysis results, 
which are more complex.  

The event tree response function and sensitivity analysis results were verified using Palisade’s @Risk 
software13. Figure 21 provides an example of a simple event tree for a backwards erosion and piping 
failure mode. Table 40 shows the event tree node probabilities for a single hazard level. Each node has a 
Triangular distribution.  

 

Figure 21 - Example backwards erosion piping event tree. 

 

 

 

 
13 https://www.palisade.com/risk/default.asp  
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Table 40 - Event tree node probabilities. 

Node Min Most Likely Max 
Initiation 0.5 0.8 1.0 
Continuation 0.6 0.7 0.9 
Progression 0.2 0.3 0.7 
Unsuccessful Intervention 0.8 0.9 1.0 
Breach 0.4 0.5 0.8 

 

Figure 22 shows an example of the event tree diagnostics tab in RMC-TotalRisk. For this comparison, 
10,000 Monte Carlo iterations were performed in both RMC-TotalRisk and Palisade’s @Risk©.  

Table 41 provides a comparison of the summary statistics from the Monte Carlo simulation. Table 42 
provides a comparison of the Pearson’s correlation coefficients, which describe the strength and 
direction of an association between the simulated input and output variables in the event tree. Table 43 
shows a comparison of the sensitivity indices, which is often referred to as the contribution to variance 
[20]. This provides the fractional contribution of variance from the input to the total output variance.  

The event tree analysis results from RMC-TotalRisk very closely match those from Palisade’s @Risk©. 
Any differences in results are due to minor differences that arise from pseudo-random number 
generators and Monte Carlo sampling errors.  

 

Figure 22 - Example of even tree diagnostics tab in RMC-TotalRisk. 
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Table 41 - Comparison of event tree response probability summary statistics. 

Statistic Palisade’s @RIsk© RMC-TotalRisk % Difference 
Mean 0.1147 0.1148 0.1% 
Std. Deviation 0.0409 0.0412 0.7% 
5th %-ile 0.0609 0.0614 0.9% 
50th %-ile 0.1074 0.1074 0.1% 
95th %-ile 0.1917 0.1920 0.1% 

 

Table 42 - Comparison of event tree node correlation coefficients. 

Node Palisade’s @RIsk© RMC-TotalRisk % Difference 
Initiation 0.37 0.37 0.0% 
Continuation 0.24 0.24 0.0% 
Progression 0.76 0.76 0.0% 
Unsuccessful Intervention 0.13 0.13 0.0% 
Breach 0.43 0.43 0.0% 

 

Table 43 - Comparison of event tree node contribution to variance. 

Node Palisade’s @RIsk© RMC-TotalRisk Difference 
Initiation 14.3% 13.7% 0.6% 
Continuation 5.7% 5.5% 0.2% 
Progression 56.7% 56.9% 0.2% 
Unsuccessful Intervention 1.5% 1.6% 0.1% 
Breach 18.1% 17.3% 0.8% 
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Composite Hazard and Response Functions 
In RMC-TotalRisk, a composite hazard or response function can be created by assigning weights (or 
likelihoods) to a list of functions as follows: 

𝐹𝐹(𝑥𝑥) =  �𝜔𝜔𝑖𝑖 ∙ 𝐹𝐹𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥) Equation 49 

where 𝐹𝐹𝑖𝑖(∙) is the CDF for function 𝐷𝐷; and 𝜔𝜔𝑖𝑖 is the weight or likelihood of function 𝐷𝐷, with 0 ≤ 𝜔𝜔𝑖𝑖 ≤ 1 
and ∑ 𝜔𝜔𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 . This type of composite function is traditionally referred to as a mixture distribution 
[21].  

In dam safety, it is common practice to evaluate various gate failure or debris blockage scenarios as 
separate analyses, and then assign a likelihood to each scenario. Similarly, a system response function 
might be a function of multiple hazard scenarios. The joint probability of the various hazards can be 
accounted for using weights (or likelihoods) for discrete hazard bins.  

For more details on the computation and algorithmic aspects of the composite hazard and response 
functions, please refer to the technical reference manual [2]. The composite hazard and response 
functions and resulting confidence intervals were verified using the R ‘mistr’ package14 for a mixture of 
three Normal distributions, which are shown in Table 44.  

Table 44 – Composite hazard and response distribution parameters and weights. 

Distribution Mean, 𝝁𝝁 Std. Deviation, 𝝈𝝈 ERL Weight 
1 10 2 100 0.3 
2 20 1 100 0.2 
3 30 5 100 0.5 

 

Verification of the computed mixture distribution was performed using built-in functions within the R 
‘mistr’ package. The confidence intervals were created by performing the bootstrap analysis with 10,000 
realizations for each sub-distribution. Then, for each realization, a mixture distribution was created 
using the weights in Table 44. Finally, confidence intervals can be derived by computing percentiles from 
the 10,000 bootstrapped mixture distributions (see the Parametric Bootstrap section for details on the 
bootstrap algorithm).  

The composite hazard function from RMC-TotalRisk is shown in Figure 23. The composite response 
function produces the same results, but it is plotted as a CDF with the hazard levels versus the non-
exceedance probabilities. Whereas the composite hazard function plots the exceedance probabilities 
versus the hazard levels. 

 

 

 
14 https://cran.r-project.org/web/packages/mistr/index.html    
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Figure 23 – Composite hazard function for three Normal distributions in RMC-TotalRisk. 

 

Figure 24 - Comparison of RMC-TotalRisk with R ‘mistr’ confidence intervals for the mixture distribution.  
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Figure 24 shows a frequency curve plot comparing the bootstrap confidence interval results from RMC-
TotalRisk to the R ‘mistr’ package. Table 45 lists the results for the computed curve and Table 46 lists the 
confidence interval results and the percent difference between the two software programs. It is clear 
from these results that RMC-TotalRisk produces effectively identical results to those created with R. Any 
differences in results are due to minor differences that arise from numerical precision differences, 
differences from pseudo-random number generators, and Monte Carlo sampling errors. Example code 
for getting the computed curve with R ‘mistr’ is provided in Figure 25 below.  

Table 45 - Comparison of RMC-TotalRisk with R 'mistr' computed curve for the mixture distribution. 

AEP R ‘mistr’ RMC-
TotalRisk 

% 
Difference 

1.0E-06 53.10 53.06 0.1% 
2.0E-06 52.34 52.33 0.0% 
5.0E-06 51.33 51.32 0.0% 
1.0E-05 50.54 50.54 0.0% 
2.0E-05 49.72 49.72 0.0% 
5.0E-05 48.60 48.59 0.0% 
1.0E-04 47.70 47.70 0.0% 
2.0E-04 46.76 46.76 0.0% 
5.0E-04 45.45 45.45 0.0% 
1.0E-03 44.39 44.39 0.0% 
2.0E-03 43.26 43.26 0.0% 
5.0E-03 41.63 41.63 0.0% 
1.0E-02 40.27 40.27 0.0% 
2.0E-02 38.75 38.75 0.0% 
5.0E-02 36.40 36.40 0.0% 
1.0E-01 34.21 34.21 0.0% 
2.0E-01 31.26 31.26 0.0% 
3.0E-01 28.72 28.72 0.0% 
5.0E-01 21.38 21.38 0.0% 
7.0E-01 15.58 15.58 0.0% 
8.0E-01 10.88 10.88 0.0% 
9.0E-01 9.15 9.15 0.0% 
9.5E-01 8.07 8.07 0.0% 
9.8E-01 7.00 7.00 0.0% 
9.9E-01 6.34 6.34 0.0% 
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Table 46 - Comparison of RMC-TotalRisk with R 'mistr' confidence intervals for the mixture distribution. 

AEP 
5% - CI 95% - CI 

R ‘mistr’ RMC-
TotalRisk 

% 
Difference R ‘mistr’ RMC-

TotalRisk 
% 

Difference 
1.0E-06 50.27 50.46 0.4% 55.80 55.87 0.1% 
2.0E-06 49.62 49.78 0.3% 55.00 55.06 0.1% 
5.0E-06 48.72 48.88 0.3% 53.94 53.96 0.0% 
1.0E-05 48.02 48.19 0.4% 53.07 53.09 0.0% 
2.0E-05 47.29 47.45 0.3% 52.16 52.19 0.1% 
5.0E-05 46.29 46.42 0.3% 50.90 50.93 0.1% 
1.0E-04 45.49 45.62 0.3% 49.91 49.93 0.0% 
2.0E-04 44.65 44.80 0.4% 48.87 48.91 0.1% 
5.0E-04 43.47 43.63 0.4% 47.43 47.43 0.0% 
1.0E-03 42.52 42.66 0.3% 46.26 46.25 0.0% 
2.0E-03 41.51 41.64 0.3% 45.00 44.99 0.0% 
5.0E-03 40.04 40.14 0.3% 43.21 43.17 0.1% 
1.0E-02 38.81 38.89 0.2% 41.71 41.68 0.1% 
2.0E-02 37.44 37.50 0.2% 40.05 40.02 0.1% 
5.0E-02 35.30 35.33 0.1% 37.50 37.50 0.0% 
1.0E-01 33.25 33.28 0.1% 35.15 35.17 0.1% 
2.0E-01 30.42 30.42 0.0% 32.09 32.09 0.0% 
3.0E-01 27.89 27.89 0.0% 29.57 29.57 0.0% 
5.0E-01 20.98 20.98 0.0% 21.73 21.64 0.4% 
7.0E-01 14.81 14.78 0.2% 16.29 16.26 0.2% 
8.0E-01 10.55 10.50 0.5% 11.24 11.23 0.1% 
9.0E-01 8.80 8.76 0.5% 9.51 9.49 0.2% 
9.5E-01 7.67 7.62 0.7% 8.49 8.47 0.2% 
9.8E-01 6.52 6.48 0.6% 7.49 7.47 0.2% 
9.9E-01 5.80 5.77 0.5% 6.87 6.87 0.1% 

 

library(mistr) 
 
# define the sub-distributions 
n1 = normdist(mean = 10, sd = 2) 
n2 = normdist(mean = 20, sd = 1) 
n3 = normdist(mean = 30, sd = 5) 
 
# create the mixture 
mix = mixdist(n1, n2, n3, weights = c(0.3, 0.2, 0.5)) 
 
# get a list of non-exceedance probabilities given the x-values 
pVals = p(mix, q= seq(0, 60, 1)) 
 

Figure 25 – Example code for creating a mixture distribution with the R ‘mistr’ package. 
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Composite Consequence Function 
In dam and levee safety, there is often a need to combine multiple consequence functions into a single 
composite function. RMC-TotalRisk provides three methods for creating a composite consequence 
function: 1) consequence functions are summed; 2) consequence functions are averaged based on user-
defined weights; and 3) the uncertainty in consequence functions is treated as a mixture distribution 
based on user-defined weights.  

Additive 
A composite consequence function can be created by summing across a list of consequences functions. 
This capability is useful when flood damages are estimated separately by types or economic sectors. For 
example, there could be damages to private properties, industrial buildings, agriculture, etc. The 
damage to each sector can be estimated separately and then aggregated to a total damage using the 
composite consequence function. 

The uncertainty analysis procedures for composite consequence functions are described in the technical 
reference manual [2]. A verification of the uncertainty routine for additive consequences was performed 
using the theoretical solution for the sum of three independent Normal distributions. 

Three hypothetical consequence functions representing life loss for different river stages (in feet) were 
created for the purposed of this verification. At a stage of zero, the life loss was zero for all three 
functions. The distribution of life loss at a stage of 10 ft was given by a Normal distribution for each 
function as shown in Table 47. The resulting additive composite consequence function is shown in Figure 
26 below. 

Table 47 - Listing of consequence uncertainty for a single hazard level at three consequence functions. 

Function Mean Life Loss, 𝝁𝝁 Std. Deviation, 𝝈𝝈 
1 10 2 
2 20 1 
3 100 5 

 

The mean (𝜇𝜇𝑋𝑋𝑌𝑌) and standard deviation (𝜎𝜎𝑋𝑋𝑌𝑌) of the sum of two independent random variables is as 
follows: 

𝜇𝜇𝑋𝑋𝑌𝑌 =  𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌  Equation 50 

𝜎𝜎𝑋𝑋𝑌𝑌 =  �𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 

 Equation 51 

These formulas are easily extended to multiple random variables; for example the mean of the sum of 
three random variables is 𝜇𝜇𝑋𝑋𝑌𝑌𝑋𝑋 =  𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌 + 𝜇𝜇𝑋𝑋 and standard deviation is  𝜎𝜎𝑋𝑋𝑌𝑌𝑋𝑋 =  �𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2 + 𝜎𝜎𝑋𝑋2. 

Since the three input distributions are Normally distributed, the resulting distribution of the sum is also 
Normally distributed. Therefore, the exact theoretical solution is easily obtained. Table 48 shows the 
verification results for the additive composite consequence functions. RMC-TotalRisk produces a near 
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perfect match with the theoretical solution. The minor differences are due to Monte Carlo sampling 
errors in the RMC-TotalRisk uncertainty routine.  

 

Figure 26 - Composite consequence function with additive consequences. 

 

Table 48 - Verification results for the additive composite consequence function. 

Statistic Exact Solution RMC-TotalRisk % Difference 
Mean 130.00 130.01 0.0% 
Std. Deviation 5.48 5.49 0.2% 
5th %-ile 120.99 120.94 0.0% 
95th %-ile 139.01 139.03 0.0% 

 

Average 
In Dam Safety risk analysis, it has been common practice to evaluate daytime and nighttime 
consequences separately, and then assigning a weight (or likelihood) to each scenario. For example, 
daytime consequences are typically given a weight of 0.42 and nighttime consequences are given a 
weight of 0.58. Then, the composite consequences are derived by treating day and night consequences 
as a weighted average.  

A verification of the uncertainty routine for averaged consequences was performed using the theoretical 
solution for the average of three independent Normal distributions. Verification of the averaged 
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composite consequence was performed using the same functions as shown in Table 47. Each function 
was given a weight of 0.3, 0.2, and 0.5, respectively. The resulting average composite consequence 
function is shown in Figure 27 below. 

The mean and standard deviation of the average of three independent random variables is: 

𝜇𝜇𝑋𝑋𝑌𝑌𝑋𝑋 =  𝜔𝜔𝑋𝑋 ∙ 𝜇𝜇𝑋𝑋 + 𝜔𝜔𝑌𝑌 ∙ 𝜇𝜇𝑌𝑌 + 𝜔𝜔𝑋𝑋 ∙ 𝜇𝜇𝑋𝑋 
 

 Equation 52 

𝜎𝜎𝑋𝑋𝑌𝑌𝑋𝑋 =  �𝜔𝜔𝑋𝑋2 ∙ 𝜎𝜎𝑋𝑋2 + 𝜔𝜔𝑌𝑌2 ∙ 𝜎𝜎𝑌𝑌2 + 𝜔𝜔𝑋𝑋2 ∙ 𝜎𝜎𝑋𝑋2 

 

 Equation 53 

where 𝜔𝜔𝑋𝑋 is the weight given to variable 𝑋𝑋, 𝜔𝜔𝑌𝑌 is the weight given to variable 𝑌𝑌, and 𝜔𝜔𝑋𝑋 is the weight 
given to variable 𝑍𝑍, with 𝜔𝜔𝑋𝑋 + 𝜔𝜔𝑌𝑌 + 𝜔𝜔𝑋𝑋 = 1.  

Since the three input distributions are Normally distributed, the resulting distribution of the average is 
also Normally distributed. Therefore, the exact theoretical solution is easily obtained. Table 49 shows 
the verification results for the average composite consequence functions. RMC-TotalRisk produces a 
near perfect match with the theoretical solution. The minor differences are due to Monte Carlo 
sampling errors in the RMC-TotalRisk uncertainty routine.  

 

Figure 27 - Composite consequence function with averaged consequences. 
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Table 49 - Verification results for the averaged composite consequence function. 

Statistic Exact Solution RMC-TotalRisk % Difference 
Mean 57.00 57.00 0.0% 
Std. Deviation 2.58 2.58 0.2% 
5th %-ile 52.76 52.75 0.0% 
95th %-ile 61.24 61.27 0.0% 

 

Mixture 
Rather than treating consequences as a weighted average, uncertainty from different consequence 
scenarios can be treated as a mixture distribution. In the past, consequences from day and nighttime 
exposure scenarios were combined as a weighted average. However, these scenarios are more 
appropriately combined as a mixture, which will fully capture the uncertainty from all scenarios.  

A verification of the uncertainty routine for mixture consequences was performed using the theoretical 
solution for the mixture of three independent Normal distributions. An additional Monte Carlo 
simulation was performed to verify the percentiles. Verification of the mixture composite consequence 
was performed using the same functions as shown previously in Table 47. Each function was given a 
weight of 0.3, 0.2, and 0.5, respectively. The resulting mixture composite consequence function is shown 
in Figure 28 below. 

The mean and standard deviation of a mixture of three distributions is: 

𝜇𝜇𝑋𝑋𝑌𝑌𝑋𝑋 =  𝜔𝜔𝑋𝑋 ∙ 𝜇𝜇𝑋𝑋 + 𝜔𝜔𝑌𝑌 ∙ 𝜇𝜇𝑌𝑌 + 𝜔𝜔𝑋𝑋 ∙ 𝜇𝜇𝑋𝑋 
 

 Equation 54 

𝜎𝜎𝑋𝑋𝑌𝑌𝑋𝑋 =  �𝜔𝜔𝑋𝑋 ∙ (𝜇𝜇𝑋𝑋2 + 𝜎𝜎𝑋𝑋2) + 𝜔𝜔𝑌𝑌 ∙ (𝜇𝜇𝑌𝑌2 + 𝜎𝜎𝑌𝑌2) + 𝜔𝜔𝑋𝑋 ∙ (𝜇𝜇𝑋𝑋2 + 𝜎𝜎𝑋𝑋2) − 𝜇𝜇𝑋𝑋𝑌𝑌𝑋𝑋2  

 

 Equation 55 

where 𝜔𝜔𝑋𝑋 is the weight given to variable 𝑋𝑋, 𝜔𝜔𝑌𝑌 is the weight given to variable 𝑌𝑌, and 𝜔𝜔𝑋𝑋 is the weight 
given to variable 𝑍𝑍, with 𝜔𝜔𝑋𝑋 + 𝜔𝜔𝑌𝑌 + 𝜔𝜔𝑋𝑋 = 1.  

The mean of the average of random variables (Equation 52) is equivalent to the mean of the mixture 
distribution (Equation 54). However, the standard deviation of the average (Equation 53) can be much 
smaller than the mixture (Equation 55).  

Even though the three input distributions are Normally distributed, the resulting mixture distribution is 
not Normally distributed. Therefore, the exact theoretical solution for the mean and standard deviation 
can be obtained, but the percentiles of the mixture does not have an exact solution. As such, and 
additional Monte Carlo simulation with 10 million samples was performed to verify the RMC-TotalRisk 
results. Table 50 shows the verification results for the mixture composite consequence functions as 
compared to the exact theoretical solution. Table 51 shows the comparison of RMC-TotalRisk to the 
Monte Carlo simulation results. RMC-TotalRisk produces a near perfect match with the theoretical and 
Monte Carlo solutions. The minor differences are due to Monte Carlo sampling errors in the RMC-
TotalRisk uncertainty routine.  
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Figure 28 - Composite consequence function with uncertainty in consequences treated as a mixture. 

 

Table 50 - Verification results for the mixture composite consequence function. 

Statistic Exact Solution RMC-TotalRisk % Difference 
Mean 57.00 57.01 0.0% 
Std. Deviation 43.30 43.28 0.0% 

 

Table 51 – Comparison of RMC-TotalRisk to a Monte Carlo simulation for the mixture composite consequence function. 

Statistic Monte Carlo RMC-TotalRisk % Difference 
Mean 56.86 57.01 0.3% 
Std. Deviation 43.29 43.28 0.0% 
5th %-ile 8.04 8.04 0.0% 
95th %-ile 106.38 106.39 0.0% 
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Verification of Risk Analysis 
In RMC-TotalRisk, within every Monte Carlo realization for every system component, risk is computed 
using numerical integration. The Numerical Integration section provided verification of the Adaptive 
Simpson’s Rule (ASR) and VEGAS methods. ASR is used for calculating risk for a system with a single 
component (or single dimension), whereas VEGAS is used for calculating risk for systems with two or 
more components (multidimensions).  

The ASR and VEGAS methods were verified against analytical integrand functions with known solutions. 
The integrands for real-world risk analyses are often very complex and they do not have a closed form 
analytical solution. Consequently, verification of the risk analysis was performed using Monte Carlo 
simulation. The Monte Carlo simulation approach randomly samples millions of events, and the 
expected value is obtained from a simple arithmetic average from all the samples. Monte Carlo 
simulation is especially useful for higher-dimensional problems where analytical solutions are not 
available.  

RMC- TotalRisk can perform multi-failure mode risk analysis for a single system component or for a 
complex system with multiple components. In addition, the user has control over the dependencies 
between failure modes and system components, as well as how consequences of joint failures should be 
handled. With this level of complexity, there are several aspects of the risk analysis that must be 
verified.  

To capture a reasonable range of complexity, nearly 50 verification tests were performed using Monte 
Carlo simulation. Each system component has the same hazard function, which was a Ln-Normal 
distribution with a real-space mean 𝜇𝜇 = 85 and standard deviation 𝜎𝜎 = 20. There are up to five 
potential failure modes, each entered as a Normal distribution (Table 52). Each failure mode has 
associated failure consequences which were entered as tabular functions (Table 53). Each system 
component has the same non-failure consequences. These inputs were used to develop the various 
system configurations listed in Table 54.  

Table 52 - Potential failure mode inputs. 

Failure Modes Mean, 𝝁𝝁 Std. Deviation, 𝝈𝝈 
PFM-1 140 30 
PFM-2 160 10 
PFM-3 150 20 
PFM-4 130 35 
PFM-5 160 15 

 

Table 53 - Consequence function inputs. 

Stage (ft) Non-Fail PFM-1 PFM-2 PFM-3 PFM-4 PFM-5 
60 0 0 0 0 0 0 

100 1 5 3 10 2 8 
140 10 50 30 100 20 80 
200 100 500 300 1,000 200 800 
250 150 750 450 1,500 300 1,200 
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Table 54 - Listing of all risk analysis verification tests. 

Test 
System Options Failure Mode Options 

Components Dependency Joint 
Consequences Modes Method Dependency Joint 

Consequences 
1 1 N/A N/A 2 CCA Independent N/A 
2 1 N/A N/A 2 CCA Negative N/A 
3 1 N/A N/A 5 CCA Independent N/A 
4 1 N/A N/A 5 CCA Negative N/A 
5 1 N/A N/A 2 Competing Independent N/A 
6 1 N/A N/A 5 Competing Independent N/A 
7 1 N/A N/A 2 Joint Independent Additive 
8 1 N/A N/A 2 Joint Independent Average 
9 1 N/A N/A 2 Joint Independent Maximum 

10 1 N/A N/A 2 Joint Independent Minimum 
11 1 N/A N/A 2 Joint Negative Additive 
12 1 N/A N/A 2 Joint Negative Average 
13 1 N/A N/A 2 Joint Negative Maximum 
14 1 N/A N/A 2 Joint Negative Minimum 
15 1 N/A N/A 5 Joint Independent Additive 
16 1 N/A N/A 5 Joint Independent Average 
17 1 N/A N/A 5 Joint Independent Maximum 
18 1 N/A N/A 5 Joint Independent Minimum 
19 1 N/A N/A 5 Joint Negative Additive 
20 1 N/A N/A 5 Joint Negative Average 
21 1 N/A N/A 5 Joint Negative Maximum 
22 1 N/A N/A 5 Joint Negative Minimum 
23 2 Independent Additive 1 N/A N/A N/A 
24 2 Independent Average 1 N/A N/A N/A 
25 2 Independent Maximum 1 N/A N/A N/A 
26 2 Independent Minimum 1 N/A N/A N/A 
27 2 Positive Additive 1 N/A N/A N/A 
28 2 Positive Average 1 N/A N/A N/A 
29 2 Positive Maximum 1 N/A N/A N/A 
30 2 Positive Minimum 1 N/A N/A N/A 
31 2 Negative Additive 1 N/A N/A N/A 
32 2 Negative Average 1 N/A N/A N/A 
33 2 Negative Maximum 1 N/A N/A N/A 
34 2 Negative Minimum 1 N/A N/A N/A 
35 2 Independent Additive 2 Joint Independent Additive 
36 2 Positive Additive 2 Joint Independent Additive 
37 2 Negative Additive 2 Joint Independent Additive 
38 5 Independent Additive 1 N/A N/A N/A 
39 5 Independent Average 1 N/A N/A N/A 
40 5 Independent Maximum 1 N/A N/A N/A 
41 5 Independent Minimum 1 N/A N/A N/A 
42 5 Positive Additive 1 N/A N/A N/A 
43 5 Positive Average 1 N/A N/A N/A 
44 5 Positive Maximum 1 N/A N/A N/A 
45 5 Positive Minimum 1 N/A N/A N/A 
46 5 Negative Additive 1 N/A N/A N/A 
47 5 Negative Average 1 N/A N/A N/A 
48 5 Negative Maximum 1 N/A N/A N/A 
49 5 Negative Minimum 1 N/A N/A N/A 
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Every risk analysis listed above in Table 54 was estimated using the “Simulate Mean Risk Only” option 
[2] in RMC-TotalRisk and compared against a Monte Carlo simulation with 10 million samples. For every 
verification test, all five risk types were computed and reported to 6 decimal places. As discussed in [2], 
the five risk types are: 1) incremental 𝔼𝔼[𝐶𝐶∆]; 2) background 𝔼𝔼[𝐶𝐶𝐵𝐵]; 3) total 𝔼𝔼[𝐶𝐶𝑇𝑇]; 4) failure 𝔼𝔼[𝐶𝐶𝐹𝐹]; and 
5) non-failure 𝔼𝔼[𝐶𝐶𝑁𝑁𝐹𝐹]. 

For a single system component, the total risk is the sum of incremental plus background risk, and the 
sum of failure plus non-failure risk: 

𝔼𝔼[𝐶𝐶𝑇𝑇] =  𝔼𝔼[𝐶𝐶∆] + 𝔼𝔼[𝐶𝐶𝐵𝐵]  Equation 56 

𝔼𝔼[𝐶𝐶𝑇𝑇] =  𝔼𝔼[𝐶𝐶𝐹𝐹] + 𝔼𝔼[𝐶𝐶𝑁𝑁𝐹𝐹] 
 Equation 57 

However, in RMC-TotalRisk, a system can have multiple components, each with multiple failure modes 
where each component also has a separate non-failure mode. As such, there is a potential for some 
embedded correlation between incremental consequences and non-failure consequences across system 
components. Therefore, for a system with multiple components, depending on the joint consequence 
rule, total risk will be greater than or equal to incremental plus background risk: 

𝔼𝔼[𝐶𝐶𝑇𝑇]Ω ≥  𝔼𝔼[𝐶𝐶∆]Ω + 𝔼𝔼[𝐶𝐶𝐵𝐵]Ω  Equation 58 

𝔼𝔼[𝐶𝐶𝑇𝑇]Ω =  𝔼𝔼[𝐶𝐶𝐹𝐹]Ω + 𝔼𝔼[𝐶𝐶𝑁𝑁𝐹𝐹]Ω 
 Equation 59 

The complete mathematic details behind these risk types are provided in the technical reference manual 
[2]. The following subsections provide a full listing of the verification test results and a description of the 
Monte Carlo algorithms used for various system configurations.  

Multiple Failure Modes 
The first 22 verification tests evaluate a single system component with multiple failure modes. RMC-
TotalRisk provides three computational methods for assessing multiple failure modes: 1) the common 
cause adjustment, 2) competing failure modes, and 3) joint failure modes. The mathematic details 
behind these computational methods are provided in the technical reference manual [2]. 

Common Cause Failure Modes 
The Common Cause Adjustment (CCA) is a method that was originally intended for failure modes that 
are not mutually exclusive and that can occur simultaneously at multiple sections of a dam due to a 
single or common cause initiating event [22]. The CCA was originally intended for positively correlated 
or independent failure modes. However, there are situations where failure modes can be negatively 
dependent, which will lead to a higher combined probability of failure for the system. RMC-TotalRisk 
employs a generalized version of the CCA that can also work with negative dependency.  

The description of the Monte Carlo routine for estimating the risk of failure for independent CCA failure 
modes is provided in Algorithm 1. This routine can be expanded to include all risk types [2].  
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Algorithm 1 – Simulate Risk of Failure with Independent CCA Failure Modes 
 

𝑅𝑅 ← number of Monte Carlo realizations 
𝑀𝑀 ← number of failure modes 
for 𝐷𝐷 ← 1 to 𝑅𝑅 do 
      ℎ ← 𝐹𝐹𝐻𝐻−1(𝐷𝐷𝑖𝑖) where 𝐷𝐷𝑖𝑖~U(0,1)                                                                             ⊳Randomly sample a hazard level 

for 𝑗𝑗 ← 1 to 𝑀𝑀 do 
     𝑝𝑝𝑓𝑓𝑗𝑗 ←  𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

(ℎ)                                             ⊳ Get the probability of failure of each failure mode given the hazard level 

end for 
for 𝑗𝑗 ← 1 to 𝑀𝑀 do 
     𝑝𝑝𝑓𝑓𝑗𝑗 ←  𝐷𝐷 ∙ 𝑝𝑝𝑓𝑓𝑗𝑗                                                               ⊳ Perform common cause adjustment of each failure probability 

     𝐹𝐹𝑝𝑝𝑓𝑓 ←  𝐹𝐹𝑝𝑝𝑓𝑓 + 𝑝𝑝𝑓𝑓𝑗𝑗                                                                                                     ⊳ Create a cumulative distribution across all modes 

    If 𝐷𝐷𝑗𝑗 ≤  𝐹𝐹𝑝𝑝𝑓𝑓  where 𝐷𝐷𝑗𝑗~U(0,1) then                                                         ⊳ Randomly sample to determine failure 

          𝑁𝑁𝑓𝑓 ← 𝑁𝑁𝑓𝑓 + 𝐶𝐶𝑓𝑓𝑗𝑗(ℎ)                               ⊳ The system failed, so get the consequences of failure given the hazard level 

          break 
     end if 
end for 

end for 
Estimate the mean risk of failure 𝔼𝔼�𝑁𝑁𝐷𝐷� ← 𝑁𝑁𝐷𝐷 𝑅𝑅⁄  
             

 

The verification results for the CCA method are provided in Table 55 through Table 58. RMC-TotalRisk 
has near perfect agreement with the Monte Carlo results. The expected values 𝔼𝔼[N] of all five risk types 
are provided in the tables. As shown in Table 55, total risk is the sum of incremental plus background 
risk: 

𝔼𝔼[𝐶𝐶𝑇𝑇] =  𝔼𝔼[𝐶𝐶∆] + 𝔼𝔼[𝐶𝐶𝐵𝐵]  Equation 60 

3.080821 =  1.654059 + 1.426762 
 Equation 61 

Likewise, total risk is also the sum of failure plus non-failure risk: 

𝔼𝔼[𝐶𝐶𝑇𝑇] =  𝔼𝔼[𝐶𝐶𝐹𝐹] + 𝔼𝔼[𝐶𝐶𝑁𝑁𝐹𝐹]  Equation 62 

3.080821 =  2.113075 + 0.967746 
 Equation 63 
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Table 55 - 1 system component with 2 independent common cause failure modes  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental, 𝔼𝔼[𝐶𝐶∆] 1.655845 1.654059 0.1% 

Background, 𝔼𝔼[𝐶𝐶𝐵𝐵] 1.427955 1.426762 0.1% 

Total, 𝔼𝔼[𝐶𝐶𝑇𝑇] 3.083800 3.080821 0.1% 

Failure, 𝔼𝔼[𝐶𝐶𝐹𝐹] 2.115712 2.113075 0.1% 

Non-Failure, 𝔼𝔼[𝐶𝐶𝑁𝑁𝐹𝐹] 0.968088 0.967746 0.0% 
 

Table 56 - 1 system component with 2 negatively dependent common cause failure modes  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.736219 1.738393 0.1% 
Background 1.427955 1.426760 0.1% 
Total 3.164173 3.167373 0.1% 
Failure 2.218916 2.222265 0.2% 
Non-Failure 0.945257 0.945108 0.0% 

 

Table 57 - 1 system component with 5 independent common cause failure modes 

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.715177 2.711843 0.1% 
Background 1.427955 1.426754 0.1% 
Total 4.143132 4.138598 0.1% 
Failure 3.494614 3.490207 0.1% 
Non-Failure 0.648518 0.648391 0.0% 

 

Table 58 - 1 system component with 5 negatively dependent common cause failure modes 

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.847377 2.841821 0.2% 
Background 1.427955 1.426752 0.1% 
Total 4.275332 4.268584 0.2% 
Failure 3.667178 3.660357 0.2% 
Non-Failure 0.608154 0.608227 0.0% 

 

Competing Failure Modes 
A competing failure analysis represents a combination of two or more failure modes that are 
“competing” to the end of life of a series system. The competing failure mode approach can be thought 
of as a race to see which failure mode will fail first. The key assumption is that each failure mode 
proceeds independently of every other one until failure occurs. At the point of first failure, each failure 
mode is mutually exclusive from one another; i.e., there cannot be joint failures.  
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The description of the Monte Carlo routine for estimating the risk of failure with independent competing 
failure modes is provided in Algorithm 2 below. This routine can be expanded to include all risk types. 
The verification results for competing failures are provided in Table 59 and Table 60. RMC-TotalRisk has 
near perfect agreement with the Monte Carlo results.  

Table 59 - 1 system component with 2 independent competing failure modes  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.745274 1.744245 0.1% 
Background 1.427955 1.426705 0.1% 
Total 3.173229 3.170950 0.1% 
Failure 2.204366 2.203265 0.0% 
Non-Failure 0.968863 0.967685 0.1% 

 

Table 60 - 1 system component with 5 independent competing failure modes  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.204566 2.197086 0.3% 
Background 1.427955 1.426719 0.1% 
Total 3.632521 3.623804 0.2% 
Failure 2.984006 2.975383 0.3% 
Non-Failure 0.648515 0.648421 0.0% 

 

Algorithm 2 – Simulate Risk of Failure with Independent Competing Failure Modes 
 

𝑅𝑅 ← number of Monte Carlo realizations 
𝑀𝑀 ← number of failure modes 
for 𝐷𝐷 ← 1 to 𝑅𝑅 do 
      ℎ ← 𝐹𝐹𝐻𝐻−1(𝐷𝐷𝑖𝑖) where 𝐷𝐷𝑖𝑖~U(0,1)                                                                             ⊳Randomly sample a hazard level 

for 𝑗𝑗 ← 1 to 𝑀𝑀 do 
    If 𝐷𝐷𝑗𝑗 ≤  𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

(ℎ) where 𝐷𝐷𝑗𝑗~U(0,1) and min
𝑗𝑗
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗
−1 �𝐷𝐷𝑗𝑗� then               ⊳ Randomly sample to determine failure 

⊳ The failure mode that fails first is the one with the minimum hazard level given the random sample        
   𝑁𝑁𝑓𝑓 ← 𝑁𝑁𝑓𝑓 + 𝐶𝐶𝑓𝑓𝑗𝑗(ℎ)                               ⊳ The system failed, so get the consequences of failure given the hazard level 

          break 
     end if 
end for 

end for 
Estimate the mean risk of failure 𝔼𝔼�𝑁𝑁𝐷𝐷� ← 𝑁𝑁𝐷𝐷 𝑅𝑅⁄  
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Joint Failure Modes 
A joint failure modes analysis directly allows for dependency between failure modes and allows for 
simultaneous (joint) failures. The only assumption required for this analysis is that a rule must be 
assumed to account for the joint consequences of failure.  

When there are multiple failure modes, the number of possible ways the system can fail is 2𝑛𝑛 − 1. The 
joint failure mode approach enumerates all possible combinations of failure and non-failure. As the 
number of failure modes and system components increase, the number of ways the system can fail 
increases exponentially [2]. Considering this, in RMC-TotalRisk, if the joint failure mode option is 
selected, the maximum number of failure modes allowable for a single system component is 20.  

The description of the Monte Carlo routine for estimating the risk of failure with independent joint 
failure modes and additive joint consequences is provided in Algorithm 3. This routine can be expanded 
to include all risk types. Example code for performing a risk analysis for a single system component with 
joint failure modes and additive consequences is provide in Figure 29 below.  

Algorithm 3 – Simulate Risk of Failure with Independent Joint Failure Modes and Additive Joint 
Consequences 
 

𝑅𝑅 ← number of Monte Carlo realizations 
𝑀𝑀 ← number of failure modes 
for 𝐷𝐷 ← 1 to 𝑅𝑅 do 
      ℎ ← 𝐹𝐹𝐻𝐻−1(𝐷𝐷𝑖𝑖) where 𝐷𝐷𝑖𝑖~U(0,1)                                                                             ⊳Randomly sample a hazard level 

for 𝑗𝑗 ← 1 to 𝑀𝑀 do 
    If 𝐷𝐷𝑗𝑗 ≤  𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

(ℎ) where 𝐷𝐷𝑗𝑗~U(0,1) then                                                ⊳ Randomly sample to determine failure 

   𝑁𝑁𝑓𝑓 ← 𝑁𝑁𝑓𝑓 + 𝐶𝐶𝑓𝑓𝑗𝑗(ℎ)                               ⊳ The system failed, so get the consequences of failure given the hazard level 

     end if 
end for 

end for 
Estimate the mean risk of failure 𝔼𝔼�𝑁𝑁𝐷𝐷� ← 𝑁𝑁𝐷𝐷 𝑅𝑅⁄  
             

 

The verification results for joint failures are provided in Table 61 through Table 76. RMC-TotalRisk has 
near perfect agreement with the Monte Carlo results. 

For a graphical comparison of risk analysis results, Figure 30 shows the FN curves for a single system 
component with two joint failure modes and additive consequences. The TotalRisk results are shown as 
thicker transparent lines, and the Monte Carlo results are plotted as dashed lines. The ASR integration 
approach used by RMC-TotalRisk arrives at nearly the same results as the Monte Carlo simulation; 
however, the ASR method can do so with only a couple hundred function evaluations rather than the 10 
million required by the simulation.  
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library(stats) 
 
Realz = 10000000 
incremental = numeric(Realz); background = numeric(Realz); total = numeric(Realz); fail = numeric(Realz); nonfail = 
numeric(Realz) 
set.seed(12345) 
 
for (i in 1:Realz){ 
   
  # Get hazard level 
  # Hazard distribution is a Ln-Normal 
  mu = 85; sigma = 20; var = sigma^2 
  lmu = log(mu^2 / sqrt(var + mu^2)); lsigma = sqrt(log(1.0 + var / mu^2)) 
  h = qlnorm(p = runif(1), meanlog = lmu, sdlog = lsigma) 
   
  # Get non-fail damages 
  nfc = approx(x = c(60, 100, 140, 200, 250), y = c(0, 1, 10, 100, 150), xout = h, yleft = 0, yright = 150)$y 
   
  # Get failure damages 
  failed = FALSE; fc = 0; ic = 0  
  # PFM 1 
  if (runif(1) <= pnorm(q = h, mean = 140, sd = 30)){ 
    failed = TRUE 
    f1 = approx(x = c(60, 100, 140, 200, 250), y = c(0, 5, 50, 500, 750), xout = h, yleft = 0, yright = 750)$y 
    fc = fc + f1  
 } 
  # PFM 2 
  if (runif(1) <= pnorm(q = h, mean = 160, sd = 10)){ 
    failed = TRUE 
    f2 = approx(x = c(60, 100, 140, 200, 250), y = c(0, 3, 30, 300, 450), xout = h, yleft = 0, yright = 450)$y 
    fc = fc + f2 
  } 
 if (failed == TRUE) ic = fc – nfc 
 
  # Record results 
  incremental[i] = ic 
  background[i] = nfc 
  if (failed == TRUE){ nfc = 0 } 
  total[i] = fc + nfc 
  fail[i] = fc 
  nonfail[i] = nfc 
   
} 
 
# Expected consequences 
mean(incremental); mean(background); mean(total); mean(fail); mean(nonfail) 
# [1] 2.137346 
# [1] 1.427623 
# [1] 3.56497 
# [1] 2.597125 
# [1] 0.9678445 

Figure 29 - Example code for estimation risk for a single system component with joint failure modes with the R ‘stats’ package.  
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Figure 30 – The F-N plot for a single system component and two independent joint failure modes with additive consequences. 
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Table 61 - 1 system component with 2 independent failure modes and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.138221 2.136250 0.1% 
Background 1.427955 1.426757 0.1% 
Total 3.566176 3.563007 0.1% 
Failure 2.597312 2.595259 0.1% 
Non-Failure 0.968863 0.967748 0.1% 

 

Table 62 - 1 system component with 2 independent failure modes and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.665706 1.666106 0.0% 
Background 1.427955 1.426764 0.1% 
Total 3.093661 3.092869 0.0% 
Failure 2.124798 2.125125 0.0% 
Non-Failure 0.968863 0.967745 0.1% 

 

Table 63 - 1 system component with 2 independent failure modes and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.783835 1.783639 0.0% 
Background 1.427955 1.426760 0.1% 
Total 3.211790 3.210399 0.0% 
Failure 2.242926 2.242653 0.0% 
Non-Failure 0.968863 0.967746 0.1% 

 

Table 64 - 1 system component with 2 independent failure modes and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.547577 1.548567 0.1% 
Background 1.427955 1.426773 0.1% 
Total 2.975532 2.975340 0.0% 
Failure 2.006669 2.007600 0.0% 
Non-Failure 0.968863 0.967740 0.1% 

 

Table 65 - 1 system component with 2 negatively dependent failure modes and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.114628 2.111377 0.2% 
Background 1.427955 1.426755 0.1% 
Total 3.542583 3.540351 0.1% 
Failure 2.598992 2.595238 0.1% 
Non-Failure 0.943591 0.945113 0.2% 
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Table 66 - 1 system component with 2 negatively dependent failure modes and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.740963 1.740667 0.0% 
Background 1.427955 1.426760 0.1% 
Total 3.168918 3.169647 0.0% 
Failure 2.225327 2.224539 0.0% 
Non-Failure 0.943591 0.945108 0.2% 

 

Table 67 - 1 system component with 2 negatively dependent failure modes and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.834379 1.833352 0.1% 
Background 1.427955 1.426760 0.1% 
Total 3.262334 3.262331 0.0% 
Failure 2.318743 2.317222 0.1% 
Non-Failure 0.943591 0.945109 0.2% 

 

Table 68 - 1 system component with 2 negatively dependent failure modes and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.647547 1.647979 0.0% 
Background 1.427955 1.426760 0.1% 
Total 3.075501 3.076959 0.0% 
Failure 2.131910 2.131851 0.0% 
Non-Failure 0.943591 0.945108 0.2% 

 

Table 69 - 1 system component with 5 independent failure modes and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.936764 6.920990 0.2% 
Background 1.427955 1.426735 0.1% 
Total 8.364718 8.347725 0.2% 
Failure 7.716204 7.699330 0.2% 
Non-Failure 0.648515 0.648395 0.0% 

 

Table 70 - 1 system component with 5 independent failure modes and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.630434 2.626588 0.1% 
Background 1.427955 1.426754 0.1% 
Total 4.058388 4.053342 0.1% 
Failure 3.409874 3.404951 0.1% 
Non-Failure 0.648515 0.648391 0.0% 
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Table 71 - 1 system component with 5 independent failure modes and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 3.874881 3.868535 0.2% 
Background 1.427955 1.426748 0.1% 
Total 5.302836 5.295283 0.1% 
Failure 4.654321 4.646891 0.2% 
Non-Failure 0.648515 0.648392 0.0% 

 

Table 72 - 1 system component with 5 independent failure modes and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.517102 1.515594 0.1% 
Background 1.427955 1.426785 0.1% 
Total 2.945057 2.942378 0.1% 
Failure 2.296542 2.293994 0.1% 
Non-Failure 0.648515 0.648385 0.0% 

 

Table 73 - 1 system component with 5 negatively dependent failure modes and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.890224 6.880921 0.1% 
Background 1.427955 1.426735 0.1% 
Total 8.318179 8.307686 0.1% 
Failure 7.710042 7.699460 0.1% 
Non-Failure 0.608137 0.608226 0.0% 

 

Table 74 - 1 system component with 5 negatively dependent failure modes and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.797486 2.794816 0.1% 
Background 1.427955 1.426753 0.1% 
Total 4.225441 4.221599 0.1% 
Failure 3.617304 3.613377 0.1% 
Non-Failure 0.608137 0.608222 0.0% 

 

Table 75 - 1 system component with 5 negatively dependent failure modes and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 4.004253 3.999984 0.1% 
Background 1.427955 1.426744 0.1% 
Total 5.432208 5.426759 0.1% 
Failure 4.824072 4.818534 0.1% 
Non-Failure 0.608137 0.608224 0.0% 
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Table 76 - 1 system component with 5 negatively dependent failure modes and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.713543 1.712076 0.1% 
Background 1.427955 1.426765 0.1% 
Total 3.141498 3.138871 0.1% 
Failure 2.533361 2.530657 0.1% 
Non-Failure 0.608137 0.608215 0.0% 

 

Multiple System Components 
Computing risk for multiple system components requires integration over a multidimensional integral. 
RMC-TotalRisk uses an adaptive importance sampling algorithm called VEGAS [7] [8]. More details on 
this method can be found in [1], [2], and [9].  

The dependency between system components is defined based on the dependency between hazard 
functions. The dependency between system components can be set as perfectly independent, positive, 
or negatively dependent. There is also an option to set the dependency between system components 
with a user-defined correlation matrix [2]. The user must also select the joint consequence rule. The 
joint failure mode approach in the previous section is used to estimate the combined consequences of 
failure and non-failure of the system. In the current version of RMC-TotalRisk, the failure modes within a 
system component are statistically independent from failure modes within all other system 
components. 

The description of the Monte Carlo routine for estimating the risk of failure with independent system 
components, each with independent joint failure modes and additive joint consequences, is provided in 
Algorithm 4. This routine can be expanded to include all risk types.  

Algorithm 4 – Simulate Risk of Failure with Independent System Components Each with Independent 
Joint Failure Modes and Additive Joint Consequences 
 

𝑅𝑅 ← number of Monte Carlo realizations 
𝐷𝐷 ← number of system components 
for 𝐷𝐷 ← 1 to 𝑅𝑅 do 

for 𝑗𝑗 ← 1 to 𝐷𝐷 do 
             𝑀𝑀𝑗𝑗 ← number of failure modes in component 𝑗𝑗 

        ℎ ← 𝐹𝐹𝐻𝐻−1�𝐷𝐷𝑖𝑖,𝑗𝑗� where 𝐷𝐷𝑖𝑖,𝑗𝑗~U(0,1)                                                          ⊳Randomly sample a hazard level for component 
       for 𝑘𝑘 ← 1 to 𝑀𝑀𝑗𝑗 do 

     If 𝐷𝐷𝑗𝑗,𝑘𝑘 ≤  𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗,𝑘𝑘
(ℎ) where 𝐷𝐷𝑗𝑗,𝑘𝑘~U(0,1) then                                               ⊳ Randomly sample to determine failure 

   𝑁𝑁𝑓𝑓 ← 𝑁𝑁𝑓𝑓 + 𝐶𝐶𝑓𝑓𝑗𝑗,𝑘𝑘
(ℎ)                                                                                             ⊳ The system component failed 

so, get the consequences of failure given the hazard level 

             end if 
       end for 
end for 

end for 
Estimate the mean risk of failure 𝔼𝔼�𝑁𝑁𝑓𝑓� ← 𝑁𝑁𝑓𝑓 𝑅𝑅⁄  
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Figure 31 shows the FN curves for a system with two components, each with one failure mode and 
additive consequences. The TotalRisk results are shown as thicker transparent lines, and the Monte 
Carlo results are plotted as dashed lines. The VEGAS multidimensional integration approach used by 
RMC-TotalRisk produces nearly the same results as the Monte Carlo simulation; however, the VEGAS 
method can typically do so with less than 20 thousand function evaluations, rather than the 10 million 
required by the Monte Carlo simulation. 

The verification results for joint failures are provided in Table 77 through Table 103. RMC-TotalRisk has 
near perfect agreement with the Monte Carlo results.  

Table 77 – 2 independent system components each with 1 failure mode and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.017288 2.018285 0.0% 
Background 2.855437 2.852825 0.1% 
Total 4.872725 4.871109 0.0% 
Failure 2.593366 2.594673 0.1% 
Non-Failure 2.279360 2.276436 0.1% 

 

Table 78 - 2 independent system components each with 1 failure mode and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.004752 2.006091 0.1% 
Background 1.427719 1.426486 0.1% 
Total 3.758951 3.759305 0.0% 
Failure 2.575244 2.577056 0.1% 
Non-Failure 1.183707 1.182249 0.1% 

 

Table 79 - 2 independent system components each with 1 failure mode and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.013030 2.013996 0.0% 
Background 2.416342 2.413949 0.1% 
Total 4.487518 4.486161 0.0% 
Failure 2.587785 2.589050 0.0% 
Non-Failure 1.899734 1.897111 0.1% 

 

Table 80 - 2 independent system components each with 1 failure mode and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.996474 1.998192 0.1% 
Background 0.439095 0.438931 0.0% 
Total 3.030384 3.032464 0.1% 
Failure 2.562703 2.565090 0.1% 
Non-Failure 0.467681 0.467374 0.1% 
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Figure 31 – The F-N plot for a system with two components, each with one failure mode and additive consequences. 
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Table 81 – 2 positively dependent system components each with 1 failure mode and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.017594 2.018545 0.0% 
Background 2.856296 2.853464 0.1% 
Total 4.873890 4.872009 0.0% 
Failure 2.593824 2.595047 0.0% 
Non-Failure 2.280066 2.276962 0.1% 

 

Table 82 - 2 positively dependent system components each with 1 failure mode and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.664981 1.665942 0.1% 
Background 1.428148 1.426719 0.1% 
Total 3.434284 3.434103 0.0% 
Failure 2.123673 2.124913 0.1% 
Non-Failure 1.310610 1.309190 0.1% 

 

Table 83 - 2 positively dependent system components each with 1 failure mode and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.782519 1.783491 0.1% 
Background 1.428148 1.426752 0.1% 
Total 3.551821 3.551691 0.0% 
Failure 2.241211 2.242467 0.1% 
Non-Failure 1.310610 1.309223 0.1% 

 

Table 84 - 2 positively dependent system components each with 1 failure mode and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.547443 1.548412 0.1% 
Background 1.428148 1.426726 0.1% 
Total 3.316746 3.316582 0.0% 
Failure 2.006136 2.007381 0.1% 
Non-Failure 1.310610 1.309201 0.1% 

 

Table 85 – 2 negatively dependent system components each with 1 failure mode and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.014946 2.018793 0.2% 
Background 2.852113 2.853782 0.1% 
Total 4.867058 4.872576 0.1% 
Failure 2.589851 2.595380 0.2% 
Non-Failure 2.277207 2.277196 0.0% 
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Table 86 - 2 negatively dependent system components each with 1 failure mode and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.014888 2.018602 0.2% 
Background 1.426056 1.426874 0.1% 
Total 3.735204 3.740538 0.1% 
Failure 2.589764 2.595126 0.2% 
Non-Failure 1.145439 1.145412 0.0% 

 

Table 87 - 2 negatively dependent system components each with 1 failure mode and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.014946 2.018674 0.2% 
Background 2.593128 2.594702 0.1% 
Total 4.617460 4.622746 0.1% 
Failure 2.589851 2.595231 0.2% 
Non-Failure 2.027609 2.027516 0.0% 

 

Table 88 - 2 negatively dependent system components each with 1 failure mode and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.014830 2.018619 0.2% 
Background 0.258984 0.259115 0.1% 
Total 2.852948 2.858527 0.2% 
Failure 2.589678 2.595149 0.2% 
Non-Failure 0.263270 0.263378 0.0% 

 

Table 89 – 2 independent system components each with 2 independent failure modes and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 4.265464 4.271295 0.1% 
Background 2.852090 2.853490 0.0% 
Total 7.117553 7.124785 0.1% 
Failure 5.182284 5.189128 0.1% 
Non-Failure 1.935270 1.935658 0.0% 

 

Table 90 – 2 positively dependent system components each with 2 independent failure modes and additive joint consequences 

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 4.269872 4.272228 0.1% 
Background 2.853251 2.853518 0.0% 
Total 7.123123 7.125745 0.0% 
Failure 5.187768 5.190203 0.0% 
Non-Failure 1.935355 1.935543 0.0% 
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Table 91 – 2 negatively dependent system components each with 2 independent failure modes and additive joint consequences 

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 4.278800 4.272820 0.1% 
Background 2.854866 2.853630 0.0% 
Total 7.133666 7.126450 0.1% 
Failure 5.197708 5.190912 0.1% 
Non-Failure 1.935957 1.935539 0.0% 

 

Table 92 – 5 independent system components each with 1 failure mode and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.108527 6.122738 0.2% 
Background 7.127700 7.119127 0.1% 
Total 13.236227 13.241865 0.0% 
Failure 7.681828 7.708889 0.4% 
Non-Failure 5.554399 5.532976 0.4% 

 

Table 93 - 5 independent system components each with 1 failure mode and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 5.568252 5.556979 0.2% 
Background 1.425540 1.424691 0.1% 
Total 8.189262 8.184263 0.1% 
Failure 7.025408 7.023737 0.0% 
Non-Failure 1.163855 1.160526 0.3% 

 

Table 94 - 5 independent system components each with 1 failure mode and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.025967 6.029169 0.1% 
Background 4.598846 4.599493 0.0% 
Total 10.968579 10.970967 0.0% 
Failure 7.558594 7.573999 0.2% 
Non-Failure 3.409985 3.396968 0.4% 

 

Table 95 - 5 independent system components each with 1 failure mode and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 5.098583 5.096918 0.0% 
Background 0.153408 0.154650 0.8% 
Total 6.633722 6.643208 0.1% 
Failure 6.478531 6.486784 0.1% 
Non-Failure 0.155191 0.156424 0.8% 
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Table 96 – 5 positively dependent system components each with 1 failure mode and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.143270 6.123966 0.3% 
Background 7.140574 7.138028 0.0% 
Total 13.283844 13.261993 0.2% 
Failure 7.723975 7.700912 0.3% 
Non-Failure 5.559869 5.561081 0.0% 

 

Table 97 - 5 positively dependent system components each with 1 failure mode and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.633103 2.627145 0.2% 
Background 1.428115 1.427658 0.0% 
Total 4.774072 4.767531 0.1% 
Failure 3.412262 3.405693 0.2% 
Non-Failure 1.361811 1.361838 0.0% 

 

Table 98 - 5 positively dependent system components each with 1 failure mode and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 3.878425 3.868349 0.3% 
Background 1.428115 1.428004 0.0% 
Total 6.019395 6.008984 0.2% 
Failure 4.657584 4.646713 0.2% 
Non-Failure 1.361811 1.362271 0.0% 

 

Table 99 - 5 positively dependent system components each with 1 failure mode and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.516603 1.515976 0.0% 
Background 1.426499 1.427498 0.1% 
Total 3.656122 3.656317 0.0% 
Failure 2.294723 2.294713 0.0% 
Non-Failure 1.361399 1.361604 0.0% 

 

Table 100 – 5 negatively dependent system components each with 1 failure mode and additive joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.095003 6.059984 0.6% 
Background 7.125940 7.107293 0.3% 
Total 13.220943 13.167277 0.4% 
Failure 7.666340 7.611653 0.7% 
Non-Failure 5.554603 5.555624 0.0% 

 

 

DRAFT



80 
 

Table 101 - 5 negatively dependent system components each with 1 failure mode and average joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 5.829741 5.793946 0.6% 
Background 1.425188 1.419711 0.4% 
Total 8.492369 8.435112 0.7% 
Failure 7.344564 7.288417 0.8% 
Non-Failure 1.147805 1.146695 0.1% 

 

Table 102 - 5 negatively dependent system components each with 1 failure mode and maximum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 6.070426 6.033674 0.6% 
Background 4.965946 4.955526 0.2% 
Total 11.280812 11.232915 0.4% 
Failure 7.627586 7.570491 0.7% 
Non-Failure 3.653226 3.662424 0.3% 

 

Table 103 - 5 negatively dependent system components each with 1 failure mode and minimum joint consequences  

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 5.590722 5.568786 0.4% 
Background 0.100801 0.100250 0.5% 
Total 7.165477 7.126707 0.5% 
Failure 7.063415 7.025254 0.5% 
Non-Failure 0.102062 0.101453 0.6% 
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Annual Probability of Inundation 
RMC-TotalRisk provides capabilities to support the National Flood Insurance Program (NFIP). The USACE 
uses a risk-informed approach to perform NFIP Levee System Evaluations (LSEs) to make a 
recommendation about whether to certify and accredit a levee system. USACE guidance for conducting 
LSEs to assess levee accreditation is currently outlined in Engineering and Construction Bulletin (ECB) 
2019-11 [23]. All LSEs must include a computation of assurance of the 0.01 AEP which is the probability 
that the 0.01 AEP event will not be exceeded [23].   

Computation of assurance of the 0.01 AEP for the NFIP requires an estimate of the annual probability of 
inundation (API), which is the probability that the leveed area will be inundated due to levee 
overtopping or breach in any given year. In RMC-TotalRisk, the API is computed as shown below in 
Equation 65. More details on API and assurance can be found in [2]. 

𝐴𝐴𝐴𝐴𝐼𝐼 = �𝐴𝐴(𝑥𝑥𝐷𝐷) ∙ 𝐴𝐴(𝐹𝐹|𝑥𝑥𝐷𝐷) + �𝐴𝐴(𝑥𝑥𝑖𝑖) ∙ {1 − 𝐴𝐴(𝐹𝐹|𝑥𝑥𝑖𝑖)}
𝐷𝐷

𝐷𝐷=𝑥𝑥𝑇𝑇

𝐷𝐷

𝐷𝐷=1

  Equation 64 

where 𝐴𝐴(𝑥𝑥𝑖𝑖) is the probability of the hazard level 𝑥𝑥𝑖𝑖; 𝐴𝐴(𝐹𝐹|𝑥𝑥𝑖𝑖) is the conditional probability of failure 
given the hazard level 𝑥𝑥𝑖𝑖; 𝑥𝑥𝑇𝑇 is the top of levee height; and {1 − 𝐴𝐴(𝐹𝐹|𝑥𝑥𝐷𝐷)} is the probability of non-
failure given the hazard level 𝑥𝑥𝑖𝑖, which is simply the complement of the probability of failure at a given 
hazard level. 

Verification of the API calculation was performed using the hypothetical levee risk analysis provided by 
Smith [24]. An illustration of the idealized cross section of a river channel with a single levee is shown in 
Figure 32. As discussed in [24], the levee has a backwards erosion piping (BEP) failure mode, which is a 
function of the height, base, and crest width of the levee. In addition, there is an overtopping failure 
mode, which is only a function of the height. For simplicity, the economic consequences do not vary 
based on the failure mechanism and are instead a function of the water level. Figure 33 shows the 
failure and non-failure consequence functions for a levee height of 70 ft.  

 

 

Figure 32 - Idealized cross section of a river channel with a single levee (taken from Smith [24]). 
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Figure 33 - Property damage in $millions as a function of water level (taken from Smith [24]). 

For verification, five different levee configurations were modeled, each with a different levee height.  A 
Monte Carlo simulation was performed using 10 million samples following Algorithm 5 below. Results 
are shown in Table 104. RMC-TotalRisk has very close agreement with the Monte Carlo results. The 
minor differences are due to Monte Carlo sampling errors. 

 

Table 104 - Comparison of RMC-TotalRisk to Monte Carlo simulation for the Annual Probability of Inundation. 

Levee Height Monte Carlo RMC-TotalRisk % Difference 
50 0.038197 0.038212 0.0% 
55 0.018829 0.018807 0.1% 
60 0.010254 0.010237 0.2% 
65 0.006042 0.006043 0.0% 
70 0.003820 0.003809 0.3% 
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Algorithm 5 – Simulate the Probability of Inundation 
 

𝑅𝑅 ← number of Monte Carlo realizations 
𝑀𝑀 ← number of failure modes 
𝑇𝑇𝑇𝑇𝑇𝑇 ← top of levee height 
for 𝐷𝐷 ← 1 to 𝑅𝑅 do 
      ℎ ← 𝐹𝐹𝐻𝐻−1(𝐷𝐷𝑖𝑖) where 𝐷𝐷𝑖𝑖~U(0,1)                                                                             ⊳Randomly sample a hazard level 

if ℎ > 𝑇𝑇𝑇𝑇𝑇𝑇  then 
     𝑁𝑁𝐼𝐼 ← 𝑁𝑁𝐼𝐼 + 1                                                                                ⊳ The levee was overtopped, so there is inundation 
else 
     for 𝑗𝑗 ← 1 to 𝑀𝑀 do 
          if 𝐷𝐷𝑗𝑗 ≤  𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

(ℎ) where 𝐷𝐷𝑗𝑗~U(0,1) then                                          ⊳ Randomly sample to determine failure 

  𝑁𝑁𝐼𝐼 ← 𝑁𝑁𝐼𝐼 + 1                                                                                  ⊳ The system failed, so there is inundation 

          end if 
     end for 
end if 

end for 
Estimate the probability of inundation 𝐴𝐴𝐴𝐴𝐼𝐼 ← 𝑁𝑁𝐼𝐼 𝑅𝑅⁄  
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Comparison with DAMRAE 
The Dam Safety Risk Analysis Engine, DAMRAE©, is a software tool for performing event tree calculations 
and risk analysis for dam safety risk assessment studies [25]. A comparison was made between RMC-
TotalRisk and DAMRAE© following the same hypothetical examples provided in [26]. The “Simulate 
Mean Risk Only” option [2] was used to estimate risk with TotalRisk.  

There were four example risk analyses: 1) a single dam with a single failure mode; 2) a dam with two 
failure modes; 3) a dam with three failure modes; and 4) a dam with ten failure modes. The multiple 
failure modes were combined using the common cause adjustment (CCA) method. The incremental risk 
results for these comparisons are provided in Table 105 through Table 108. RMC-TotalRisk very closely 
matches DAMRAE©. 

Differences in results are most likely due to differences in numerical integration techniques. Each of the 
DAMRAE© risk analyses were estimated using the Trapezoidal Rule integration with 50 bins. Whereas 
RMC-TotalRisk uses an Adaptive Simpson’s Rule (ASR) approach, which required approximately 300 
function evaluations to reach a tolerance of 1𝐷𝐷−8 for each of the risk analyses. The differences between 
the software are minor and would not change any real-world investment decisions.  

Table 105 – Comparison of RMC-TotalRisk to DAMRAE© for incremental risk for 1 system component with 1 failure mode.  

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DAMRAE© 1.620E-07 1047 1.690E-04 
RMC-TotalRisk 1.618E-07 1047 1.694E-04 
% Difference 0.1% 0.0% 0.2% 

 

Table 106 – Comparison of RMC-TotalRisk to DAMRAE© for incremental risk for 1 system component with 2 failure modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DAMRAE© 3.150E-07 1010 3.180E-04 
RMC-TotalRisk 3.146E-07 1010 3.177E-04 
% Difference 0.1% 0.0% 0.1% 

 

Table 107 – Comparison of RMC-TotalRisk to DAMRAE© for incremental risk for 1 system component with 3 failure modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DAMRAE© 7.990E-07 977 7.810E-04 
RMC-TotalRisk 7.854E-07 977 7.676E-04 
% Difference 1.7% 0.0% 1.7% 

 

Table 108 – Comparison of RMC-TotalRisk to DAMRAE© for incremental risk for 1 system component with 10 failure modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DAMRAE© 1.700E-05 1180 2.000E-02 
RMC-TotalRisk 1.694E-05 1180 1.998E-02 
% Difference 0.4% 0.0% 0.1% 
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Comparison with DamonRAE 
Since 2019, the USACE Risk Management Center has primarily performed dam and levee safety risk 
analyses with a spreadsheet tool colloquially referred to as DamonRAE, which is named after the 
developer of the tool. This spreadsheet tool uses Palisade’s @Risk© for performing Monte Carlo 
simulation of event trees and other risk inputs. Within each Monte Carlo realization, incremental, 
background, and total risk are estimated using the Trapezoidal Rule method with 50 bins (please see the 
technical reference manual [2] for details on these risk types). DamonRAE was previously validated 
against DAMRAE© and shown to produce the same results [26].  

A comparison was made between RMC-TotalRisk and DamonRAE using three example dams within the 
USACE Dam Safety portfolio15. The “Simulate Mean Risk Only” option [2] was used to estimate risk with 
TotalRisk. For each example, multiple failure modes were combined using the CCA method. 

The first example dam has two failure modes: 1) spillway erosion; and 2) concentrated leak erosion 
along the embankment at foundation contact. Results for this example are provided in Table 109 and 
Table 110. RMC-TotalRisk very closely matches DamonRAE for this example.  

The primary differences in results are most likely due to differences in numerical integration techniques. 
RMC-TotalRisk uses an ASR approach, which required 117 function evaluations to reach a tolerance of 
1𝐷𝐷−8 for this example risk analysis.  

Table 109 – Comparison of RMC-TotalRisk to DamonRAE for incremental risk at example ‘Dam 1’ with 2 Failure Modes.  

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DamonRAE 8.970E-06 127.00 1.140E-03 
RMC-TotalRisk 8.883E-06 127.83 1.136E-03 
% Difference 1.0% 0.7% 0.4% 

 

Table 110 – Comparison RMC-TotalRisk to DamonRAE for example ‘Dam 1’ with 2 Failure Modes.  

Risk Type DamonRAE, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 1.140E-03 1.136E-03 0.4% 
Background 3.720E-05 3.656E-05 1.7% 
Total 1.180E-03 1.172E-03 0.7% 

 

The next example dam also has two failure modes: 1) overtopping of dam crest leading to breach; and 2) 
backwards erosion piping on the left abutment. Results for this example are provided in Table 111 and 
Table 112. RMC-TotalRisk closely matches DamonRAE for this example. While the percent differences 
are noticeable, the absolute differences are very small.  

The primary differences in results are most likely due to differences in numerical integration techniques. 
RMC-TotalRisk required 413 function evaluations to reach a tolerance of 1𝐷𝐷−8 for this example risk 
analysis. Therefore, the 50 bins used in DamonRAE are likely insufficient to reach an equivalent level of 

 
15 The names of these dams and the inputs are not provided since the risk results are for internal use 
only.  
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precision. In addition, due to the challenge of converting the spreadsheet model to TotalRisk, there 
could be minor differences in how uncertainty is sampled between inputs.  

Table 111 – Comparison of RMC-TotalRisk to DamonRAE for incremental risk at example ‘Dam 2’ with 2 Failure Modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DamonRAE 2.370E-07 9,454.00 2.240E-03 
RMC-TotalRisk 2.402E-07 9,452.28 2.271E-03 
% Difference 1.4% 0.0% 1.4% 

 

Table 112 – Comparison RMC-TotalRisk to DamonRAE for example ‘Dam 2’ with 2 Failure Modes. 

Risk Type DamonRAE, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.240E-03 2.271E-03 1.4% 
Background 6.960E-01 6.772E-01 2.7% 
Total 6.980E-01 6.794E-01 2.7% 

 

The final example dam has three failure modes: 1) overtopping of dam crest leading to breach; 2) 
backwards erosion piping of foundation soils in the terrace section; and 3) backwards erosion piping of 
foundation soils in the transition section. Results for this example are provided in Table 113 and Table 
114. RMC-TotalRisk does not agree well with DamonRAE for this example. The percent differences are 
greater than five percent, but the absolute differences are relatively small; certainly not large enough to 
change any investment decisions. Nevertheless, as mentioned previously, differences greater than five 
percent required additional analysis and justification.  

Table 113 – Comparison of RMC-TotalRisk to DamonRAE for incremental risk at example ‘Dam 3’ with 3 Failure Modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
DamonRAE 3.600E-04 8.00 2.840E-03 
RMC-TotalRisk 3.308E-04 7.86 2.600E-03 
% Difference 8.1% 1.8% 8.4% 

 

Table 114 – Comparison RMC-TotalRisk to DamonRAE for example ‘Dam 3’ with 3 Failure Modes. 

Risk Type DamonRAE, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.840E-03 2.600E-03 8.4% 
Background 4.550E-02 3.746E-02 17.7% 
Total 4.840E-02 4.006E-02 17.2% 

 

As an additional verification test, a Monte Carlo simulation with 10 million samples (see Algorithm 1) 
was used to calculate risk for example Dam #3. The results from this comparison are provided in Table 
115 and Table 116. RMC-TotalRisk very closely matches the Monte Carlo results. Therefore, it can be 
concluded that the primary differences between TotalRisk and DamonRAE for example Dam #3 are most 
likely due to differences in numerical integration techniques. RMC-TotalRisk required 209 function 
evaluations to reach a tolerance of 1𝐷𝐷−8 for this example risk analysis. Therefore, the 50 bins used in 
DamonRAE are likely insufficient to reach an equivalent level of precision. In addition, due to the 
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challenge of converting the spreadsheet model to TotalRisk, there could be minor differences in how 
uncertainty is sampled between inputs. 

Table 115 – Comparison of RMC-TotalRisk to Monte Carlo for incremental risk at example ‘Dam 3’ with 3 Failure Modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
Monte Carlo 3.314E-04 7.86 2.604E-03 
RMC-TotalRisk 3.308E-04 7.86 2.600E-03 
% Difference 0.2% 0.0% 0.1% 

 

Table 116 – Comparison RMC-TotalRisk to Monte Carlo for example ‘Dam 3’ with 3 Failure Modes. 

Risk Type Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 2.60E-03 2.600E-03 0.1% 
Background 3.74E-02 3.746E-02 0.2% 
Total 4.00E-02 4.006E-02 0.1% 
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Comparison with LST 2.0 
The USACE Levee Screening Tool (LST) 2.0 is used to perform screening-level quantitative risk analysis 
for the Levee Safety program [27]. The LST has been used to calculate screening-level risk for several 
thousand levee segments and is considered a state-of-the-art risk analysis and portfolio management 
tool. The LST 2.0 uses the computing failure mode approach for multiple failure modes [2].  

A comparison between RMC-TotalRisk and LST 2.0 was made using a real levee segment from the USACE 
Levee Safety portfolio16. The levee has the following failure modes: 

• Backwards erosion piping in the foundation 
• Backwards erosion piping through the embankment 
• Backwards erosion piping of the floodwall foundation 
• Embankment erosion 
• Embankment stability 
• Floodwall instability 
• Inoperability of closures 
• Overtopping 

The LST 2.0 combines the multiple failure modes using the competing failure modes method. Results for 
this comparison are provided in Table 117 and Table 118. The “Simulate Mean Risk Only” option [2] was 
used to estimate risk with TotalRisk.  RMC-TotalRisk very closely matches the results from the LST. The 
minor differences are primarily due to differences in numerical integration approaches.  

The LST computes risk using the Trapezoidal Rule with approximately 100 integration bins. Whereas, 
TotalRisk uses the ASR method, which required 253 function evaluations to reach a tolerance of 1𝐷𝐷−8 
for this example. In addition, RMC-TotalRisk pre-processes the cumulative incident functions (CIFs) 
needed for competing failure modes using 200 uniformly spaced hazard levels. The differences between 
results are very small and would not lead to different investment decisions.  

Table 117 – Comparison of RMC-TotalRisk to LST for incremental risk for levee segment with 8 Failure Modes. 

 Ex. Probability, 𝜶𝜶 Conditional Mean, 𝜼𝜼 Mean, 𝔼𝔼[𝐍𝐍] 
LST 1.378E-03 68.39 9.426E-02 
RMC-TotalRisk 1.398E-03 66.84 9.345E-02 
% Difference 1.4% 2.3% 0.9% 

 

Table 118 – Comparison RMC-TotalRisk to LST for levee segment with 8 Failure Modes. 

Risk Type LST, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Incremental 9.426E-02 9.345E-02 0.9% 
Background 3.042E-02 3.026E-02 0.5% 
Total 1.247E-01 1.237E-01 0.8% 

  

 
16 The names of the levee segment and the inputs are not provided since the risk results are for internal 
use only. 
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Comparison with HEC-FDA 
The flood damage reduction analysis software, HEC-FDA [15], has been the primary software used for 
assessing expected annual flood damages in USACE since 1994. The underlying quantitative risk analysis 
framework employed by HEC-FDA is documented in [28], and it is like RMC-TotalRisk. Both tools divide 
the risk analysis inputs into four primary components: the hazard, transform, response, and 
consequence functions.  

However, there are some significant differences between the tools. RMC-TotalRisk is part of a larger risk 
analysis software suite [29] which can import results from state-of-the-art flood hazard and 
consequence tools, such as HEC-SSP17, RMC-BestFit [30], and LifeSim [31]. System response functions 
can be derived from event tree analysis, or from one of the RMC toolboxes18. Most significantly, RMC-
TotalRisk can perform risk analysis for complex systems that have multiple dependent system 
components, each with multiple failure modes, and different joint consequence rules.  

HEC-FDA does perform system risk, but the calculations assume that each system component is 
independent, and that inundation areas do not overlap, and thus joint consequences are additive.  

Consider a system with two levee segments, where the consequences of failure from each segment are 
additive. Computing risk for multiple system components requires integration over a multidimensional 
integral. Following the general risk formula provided in [2], the system risk becomes a two-dimensional 
integral: 

𝔼𝔼[𝐶𝐶]Ω =  � � {𝐶𝐶𝑋𝑋(𝑥𝑥) + 𝐶𝐶𝑌𝑌(𝑦𝑦)} ∙ 𝐷𝐷𝑋𝑋𝑌𝑌�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� ∙ 𝑑𝑑𝑥𝑥 ∙ 𝑑𝑑𝑦𝑦
∞

−∞

∞

−∞

  Equation 65 

where 𝑥𝑥 is the hazard level for system component 𝑋𝑋; 𝐶𝐶𝑋𝑋(𝑥𝑥) determines the consequences for the 
hazard level 𝑥𝑥; 𝑦𝑦 is the hazard level for system component 𝑌𝑌; 𝐶𝐶𝑌𝑌(𝑦𝑦) determines the consequences for 
the hazard level 𝑦𝑦; and 𝐷𝐷𝑋𝑋𝑌𝑌�𝐶𝐶𝑋𝑋(𝑥𝑥),𝐶𝐶𝑌𝑌(𝑦𝑦)� is the joint PDF of the combined system consequences 
occurring.  

The complex integral in Equation 65 can be simplified. For any two random variables X and Y, the 
expected value of the sum of those variables will be equal to the sum of their expected values: 

𝔼𝔼[𝐶𝐶]Ω = 𝔼𝔼[𝐶𝐶𝑋𝑋 + 𝐶𝐶𝑌𝑌] =  𝔼𝔼[𝐶𝐶𝑋𝑋] + 𝔼𝔼[𝐶𝐶𝑌𝑌]  Equation 66 

Considering this, HEC-FDA computes system risk by estimating the expected damages at each individual 
levee segment, then simply summing the expected damages at each segment to get the overall system 
risk.  

 

 

 
17 https://www.hec.usace.army.mil/software/hec-ssp/  
18 https://www.rmc.usace.army.mil/Software/  
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The expected value at each levee segment is computed using simple Monte Carlo integration with a 
convergence rule based on the following criteria: 

𝑧𝑧1−𝛼𝛼 2�
∙ 𝜎𝜎𝐶𝐶

𝔼𝔼[𝐶𝐶] ∙ √𝑁𝑁
≤ 𝜀𝜀  Equation 67 

where 𝑧𝑧 is the standard Normal deviate for a confidence level 𝛼𝛼 = 0.05; 𝔼𝔼[𝐶𝐶] is the expected 
consequence from 𝑁𝑁 samples; 𝜀𝜀 = 0.01 is the relative tolerance; and 𝑁𝑁 ≤ 500,000.  

RMC-TotalRisk allows for dependency between system components, and the user must also select the 
joint consequence rule, which can be additive, average, maximum, or minimum. This means that RMC-
TotalRisk must use a more robust and efficient multidimensional integration approach. To avoid 
computational limitations, RMC-TotalRisk uses an adaptive importance sampling algorithm called VEGAS 
[7] [8]. More details on this method can be found in [1], [2], and [9]. This approach was verified in the 
previous Multidimension Integration and Multiple System Components sections of this report.  

A comparison between RMC-TotalRisk and HEC-FDA was performed using the ‘Beargrass Creek’ example 
project provided in the HEC-FDA user guide [15] and training course19. The Beargrass Creek study used 
for that course consists of two highly urbanized damage reaches on the South Fork of the Beargrass 
Creek. In this example project, there are two levee reaches per system, with four alternatives for 
reducing flood risk: 

• Without project condition 
• Plan 1: Detention and channel improvement 
• Plan 2: Floodwall only 
• Plan 3: Detention, channel improvement, and floodwall. 

For this comparison, results were evaluated at the current year (2021) and a future year (2030). Each 
analysis in TotalRisk was performed using the “Simulate Mean Risk Only” option [2]. Results of the 
comparison are provided in Table 119 and Table 120. For the most part the differences are relatively 
minor. However, there are two alternatives that have differences greater than five percent, which 
required additional analysis and justification.  

Table 119 - Comparison of RMC-TotalRisk to HEC-FDA for Bear Creek 2021 EAD. 

Alternative HEC-FDA, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Without 952.48 916.41 3.8% 
Plan 1 588.53 571.04 3.0% 
Plan 2 551.85 512.91 7.1% 
Plan 3 173.37 156.59 9.7% 

 

 

 

 
19 https://www.hec.usace.army.mil/confluence/fdadocs/fdatutorials/flood-damage-assessment-course-
content 
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Table 120 - Comparison of RMC-TotalRisk to HEC-FDA for Bear Creek 2030 EAD. 

Alternative HEC-FDA, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Without 1,097.25 1,111.27 1.3% 
Plan 1 610.62 613.10 0.4% 
Plan 2 723.74 730.40 0.9% 
Plan 3 181.27 183.84 1.4% 

 

An additional comparison was performed using Monte Carlo simulation with 10 million samples, and 
results are provided in Table 121 and Table 122. RMC-TotalRisk has near perfect agreement with these 
Monte Carlo results.  

Table 121 - Comparison of RMC-TotalRisk to Monte Carlo simulation for Bear Creek 2021 EAD. 

Alternative Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Without 916.75 916.41 0.0% 
Plan 1 571.15 571.04 0.0% 
Plan 2 513.35 512.91 0.1% 
Plan 3 156.71 156.59 0.1% 

 

Table 122 - Comparison of RMC-TotalRisk to Monte Carlo simulation for Bear Creek 2030 EAD. 

Alternative Monte Carlo, 𝔼𝔼[𝐍𝐍] RMC-TotalRisk, 𝔼𝔼[𝐍𝐍] % Difference 
Without 1,111.66 1,111.27 0.0% 
Plan 1 613.16 613.10 0.0% 
Plan 2 730.83 730.40 0.1% 
Plan 3 183.98 183.84 0.1% 

 

The Monte Carlo simulation results would tend to indicate that the primary differences between RMC-
TotalRisk and HEC-FDA are most likely due to differences in numerical integration techniques. Additional 
sources of differences between software programs could be some combination of the following: 

• Minor differences in how uncertainty is quantified in the nonparametric hazard functions. In the 
Nonparametric Hazard Function section of this report, the differences between RMC-TotalRisk 
were shown to be minor.  

• The damage functions are automatically computed and aggregated in HEC-FDA. For this 
example, those curves were extracted and combined as a composite consequence function in 
RMC-TotalRisk. There could be minor differences in how this input is treated between the 
software programs.  

• There could be differences in linear interpolation transforms used between software. The 
nonparametric hazard functions in RMC-TotalRisk were set to use a logarithm transform for 
flows and a Normal z-variate transform for probabilities. It is unclear what is used in HEC-FDA. 
Likewise, it is unclear if any transforms are used to improve interpolation on any of the other 
input functions in HEC-FDA.   
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Conclusions 
As demonstrated in this report, the computational methods used in RMC-TotalRisk have been verified. 
The general numerical methods have been verified against known theoretical and analytical solutions, 
and widely used, documented, and verified R packages. The input functions were verified with R and 
Palisade’s @Risk. The risk analysis was verified using Monte Carlo simulation for a variety of complex 
systems. In all cases, RMC-TotalRisk produced valid results.  

Risk analysis results from RMC-TotalRisk were also compared with other risk analysis software and tools, 
such as DAMRAE©, DamonRAE, LST, and HEC-FDA. In most cases, TotalRisk produced similar results that 
differed by less than five percent difference. Most of the differences in precision between these various 
tools were inconsequential and would not lead to a different risk-informed investment decision.  
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