

I2K 2024 Workshop

Volker Baecker

Biocampus Montpellier Montpellier Ressources Imagerie MRI-Center for Image Analysis (MRI-CIA)

How far is it across the river?

Applications

Segmentation

- Once the segmentation done
- Measuring the width should be easy

Width- But what width?

- min, max, average, median?
 - Profile, Distribution
- What does "across" mean?
- Should small irregularities be taken into account?
- What, if there are islands in the river?
- Width at elbows?

How (usually) not to do it!

• Vertical lines across the structure

• Perpendicular to the border

Properties

- Give the expected results for simple forms
 - Rectangle
 - Ellipse
- Correspond to a distance from border to border

Ideas

- Measure distance to borders perpendicular to a "centerline"
- Use distance maps

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
0	0	0	1	1	1	2	2	2	1	1	1	0	0	0
0	0	1	1	2	2	3	3	3	2	2	1	1	0	0
0	0	1	2	3	3	4	4	4	3	3	2	1	0	0
0	1	1	2	3	4	4	5	4	4	3	2	1	1	0
0	1	2	3	4	4	5	6	5	4	4	3	2	1	0
0	1	2	3	4	4	5	6	5	4	4	3	2	1	0
0	1	1	2	3	4	4	5	4	4	3	2	1	1	0
0	0	1	2	3	3	4	4	4	3	3	2	1	0	0
0	0	1	1	2	2	3	3	3	2	2	1	1	0	0
0	0	0	1	1	1	2	2	2	1	1	1	0	0	0
0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Definitions

• Medial axis

[Blum67]

- The medial axis of an object is the set of all points having more than one closest point on the object's boundary.
- Medial axis transform (MAT)
 - The medial axis together with the associated radius function of the maximally inscribed discs

Medial axis

- Medial axis transform
 - Allows to reconstruct the original mask

- Grassfire Transform
 - Fire is simultaneously lit at all boundary points
 - The fire propagates inside the object at a uniform velocity.
 - The skeleton is formed as the union of all quench points, where two independent fire-fronts meet

[Blum67]

Approach in MorpholibJ

- MorpholibJ thickness measurement [Legland16]
 - Create distance map
 - Create skeleton
 - Use the double of the values of the distance map that lie on the skeleton
- Problems:
 - Spurious branches
 - The skeleton does not exactly lie on the
- Solutions:
 - Smooth borders
 - Prune skeleton

Approach Local Thickness

- For each point inside the object its local thickness is
 - The diameter of the largest sphere (circle), that fits inside the object and contains the point
- Volume (area) thickness, not surface (border) thickness

[Hildebrand1997]

Computing Local Thickness of 3D Structures with ImageJ, 2007 Robert P. Dougherty OptiNav, Inc. Bellevue, WA, USA

Approach Local Thickness

Local thickness

- Advantages
 - Works in 2D and 3D
 - Always gives a result
 - No parameters

- Problems
 - Overestimates the distance
 - Smoothing the border makes the average thickness bigger

Approach Voronoi

- Divide the plane, so that all points in a cell have the same closest object
- The points on the edges of the cells have the same distance to multiple objects

Voronoi

- The Voronoi edges correspond to the ridge of the distance transform of the background
- The Voronoi edges are a superset of the Medial Axis Transform

Green – Skeleton Magenta - Voronoi

Approach Voronoi

- Treat the two "opposite" borders as objects and calculate the Voronoi cell edges between them
- The outline of the object, must be separated into two objects

Approach Perpendicular to inertia axis

- Sample the distance across the ulletobject
 - Using equidistant lines
 - Perpendicular to the inertia axis
- The object must be "reasonably straight"
- Stop at a distance from the borders of the image

- Rotate the object
 - To make the inertia axis parallel to the xaxis
 - Use vertical lines

Approach Perpendicular to "centerline"

- Calculate a "centerline"
- Sample the distance across the object
 - Using equidistant lines perpendicular to the centerline
 - Calculate the local direction of the centerline at a point using n neighbors
- Problem at "elbows"
- Result depends on the "centerline"

Width Profile Tools

- t local thickness
- v voronoi
- i perpendicular to inertia axis
- C perpendicular to centerline
- Right click options
- First button (image) help page

- Tools
 - Select centerline
 - Smooth mask
- Install tool
- Download/Open sample images

Exercise

- Select an image
 - A binary mask
- Calculate the width profile using the four methods
- Compare the results

Supplementary Exercise

- 1)Calculate the average thickness with MorpholibJ
- 2) Do the steps manually:
 - 1) Calculate the skeleton and the distance map
 - 2) Measure the average of the distance values that lie on the skeleton

Literature

Blum 1967

Blum, Harry (1967). "A transformation for extracting new descriptors of shape". In Wathen-Dunn, Weiant (ed.). Models for the Perception of Speech and Visual Form (PDF). Cambridge, Massachusetts: MIT Press. pp. 362–380.

Legland 2016

David Legland, Ignacio Arganda-Carreras, Philippe Andrey; MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 2016; 32 (22): 3532-3534. doi: 10.1093/bioinformatics/btw413

Hildebrand 1997

Hildebrand, T., and Rüegsegger, P. (1997). A new method for the model-independent assessment of thickness in three-dimensional images. Journal of Microscopy 185, 67–75. 10.1046/j.1365-2818.1997.1340694.x.