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Introduction

We study the problem of returning optimal matches of content from visually-envoked electroen-
cephalography (EEG) signals. Formally, the central challenge is one of classification: given 17
channel EEG time series data at 100 time points, classify which of the 1,654 images classes was
shown (aardvark, abacus, accordion, ...).

EEG data is very noisy - completely impossible for a human to map from EEG → image class
Scarcity of EEG-image tuple data

From these challenges, it is desirable to produce lower-dimensional latent representations of EEG
data that are similar within classes and different between classes. Then, much simpler classification
algorithms can be run on the latent representations.

Background

EEG-visual recognition: Spampinato et. al [Spa+17] randomly selected 50 images of 40
classes from ImageNet to show to subjects, whose EEG recordings were measured when
viewing these images. Every EEG clip is encoded with recurrent neural networks, then an
image class is predicted for each clip with a CNN-based classifier.
EEG-visual reconstruction: There have been numerous works that aim to reconstruct the
originally viewed image given the corresponding EEG recording [Sin+23], [Kav+17].
Combinations of VAEs and GANs are employed here to produce an image for a given class
from an EEG-class tuple. [Sin+23] uses a constrastive learning approach to extract features
from EEG signals, then use a conditional GAN to synthesize the input images, conditioning on
EEG signals. [Kav+17] uses an RNN for feature extraction and VAE for image generation.
EEG-visual retrieval: Focuses on predicting the exact input shown given an EEG recording
out of a given image library. For this task, it is necessary to rank the image library by which is
most likely to be the one seen by the EEG recording. [Ye+22] uses a graph convolutional
network as an EEG encoder, then uses contrastive learning for correlating EEG encodings with
image encodings.

Dataset

The THINGS-EEG dataset consists of 1654 image classes, with 10 images each, and the
corresponding EEG time-series recorded for each of these 16540 images for ten patients, 4 times
per image, over 17 channel/electrodes, over 100 ms. The data is preprocessed, but very limited
for generative modeling tasks (only 10 images per class).
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Models

Two stage process:

Unsupervised latent representations of the EEG recordings using a variant of a VAE
Train a multi-class classifier on these latents to predict image class

Vanilla models, along with VAEs with convolution and LSTM encoders, failed to
uncover meaningful latent spaces, and the classifier performed no better than ran-
dom.

Original FFT LSTM

We used FFT and LSTM for feature extraction because we found that it reduces the amount of
redundant data in the dataset the models are trained on.
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TRIPLET(a, p, n) = max{d(ai , pi) − d(ai , ni) + margin, 0}
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Loss = TRIPLET + MSE + β ∗ KL

Intuition: good latents should be (1) quite different across different classes, (2)
similar in the same class, (3) still follow the distribution of a prior, and (4) hold
enough information for the decoder to reconstruct the image. This loss includes all
four.

Results

We trained models specialized on classifying 50 image classes, 100 image classes, and all 16540
image classes. To evaluate, we used two key metrics: Percentage Accuracy, indicating the correct
class identification rate from EEGs, and Multiclass AUROC, evaluating the model’s ability to
distinguish between various classes.

50 Class % Accuracy % AUROC
CVAE + RF Classifier 16% 76%
SIAMVAE + NN Classifier 25.30% 96%
VAE + NN Classifier 2% 50%
NN Classifier 2.17 1,392
Random 2% 50%

Table 1. results of 50-class classification.

100 Class % Accuracy % AUROC
SIAMVAE + NN Classifier 19.57% 97%
VAE + NN Classifier 1% 50%
NN Classifier 2.17 1,392
Random 1% 50%

Table 2. results of 100-class classification.

Note how the average EEG latents are very similar for different image classes
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Further Steps

Developing a basic prototype of a search engine operating on encoding unseen live EEG
recordings
Investigating more into using attention/transformers for the temporal aspect of EEG data
Applying our two-stage approach to EEG-visual retrieval (instance-level)
Conditioning on meta-categories (e.g, the image classes cat, dog, giraffe grouped under
animals)
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